Math, asked by Evrajdhillon, 1 year ago

plzz someone answer my question ​

Attachments:

Answers

Answered by Anonymous
2

Given, 1/cosec theta + cot theta - 1/sin theta

       It can be written as,

= 1/cosec theta + cot theta * cosec theta - cot theta/cosec theta - cot theta - 1/sin theta

= cosec theta - cot theta/cosec^2 theta - cot ^2 theta - 1/sin theta

= cosec theta - cot theta/1 - 1/sin theta

= sin theta(cosec theta - cot theta)-1/sin theta

= 1-cos theta - 1/sin theta

= 1/sin theta - cos theta/sin theta  - 1/sin theta

= 1/sin theta - cot theta - cosec theta 

= 1/sin theta - (cosec theta + cot theta)

= 1/sin theta - (cosec theta + cot theta)  * (cosec theta - cot theta)/cosec theta - cot theta)

= 1/sin theta - 1/(cosec theta - cot theta)

Answered by sagarnirapure914
18

Answer:

Heya...... ✔️✔️✔️

Please consider : theta = x

LHS = 1/(cosec x−cot x) − 1/sin x

= 1/(1/sin x−cosx/sin x) − 1/sinx

= sinx/(1−cosx) − 1/sin x

= sin²x−(1−cosx)/sinx(1−cosx)

= (1−cos²x−1+cosx)/sinx(1−cosx)

......[ ∵ sin²x+cos²x=1]

= cosx(1−cosx)/sinx(1−cosx)

= cot x ......(1)

RHS = 1/sinx − 1/(cosecx+cotx)

= 1/sinx − 1/(1/sinx + cosx/sinx)

= 1/sinx − sinx/(1+cosx)

= (1+cosx−sin²x)/sinx(1+cosx)

= [1+cosx − (1−cos²x)]/sinx(1+cosx)

......[ ∵ sin²x+cos²x=1]

= cosx(1+cosx)/sinx(1+cosx)

= cotx ......(2)

from equations (1) & (2)

LHS = RHS

-------------------------Hence proved

Similar questions