plzz tell I will mark brain
Answers
Answer:
p^2 = cosecthita-sinthita , q^2= secthita-cosecthita
Step-by-step explanation:
cosecthita^2-sinthita^2×secthita^2-cosecthita^2(cosecthita^2-sinthita+secthita-cosecthita^2)=1
= -sinthita^2×secthita^2(-sinthita^2+secthita^2) {+ + - = 0}
now you can make it possible
mark as brainliest .
Solution: Given: cosecβ-sinβ = p and, secβ-cosβ = q.
⇒ p² = (cosecβ-sinβ)² = cosec²β+sin²β-2cosec.βsinβ = cosec²β+sin²β-2 = cosec²β-1+sin²β-1
⇒ p² = cot²β-cos²β
And q² = (secβ-cosβ)² = sec²β+cos²β-2secβ.cosβ = sec²β+cos²β-2 = sec²β-1+cos²β-1
⇒ q² = tan²β-sin²β
To prove: p²q²(p²+q²+3) = 1
Taking L.H.S.,
= p²q²(p²+q²+3)
= (cot²β-cos²β)(tan²β-sin²β)(cot²β-cos²β+tan²β-sin²β+3)
= [cot²β.tan²β-cos²β.tan²β-cot²β.sin²β+cos²β.sin²β][cot²β+tan²β-(cos²β+sin²β)+3]
= [1-sin²β-cos²β+cos²β.sin²β][cot²β+tan²β-1+3]
= [1-(sin²β+cos²β)+cos²β.sin²β][cot²β+tan²β+2]
= [1-1+cos²β.sin²β][cot²β+tan²β+2]
= cos²β.sin²β.[cot²β+tan²β+2]
= cos²β.sin²β.cot²β + cos²β.sin²β.tan²β + 2cos²β.sin²β
= cos⁴β + sin⁴β + 2cos²β.sin²β
= (cos²β+sin²β)²
= 1²
= 1 = R.H.S.
Hence Proved
Please mark it as Brainliest.