Math, asked by aarchi82, 1 year ago

plzz tell this I will mark u as brainlist

Attachments:

Answers

Answered by shadowsabers03
3

\huge\boxed{\ \ \ \ \ \ \ \ \ \ \huge\boxed{\ \ \ \ \ \ \bold{ x^3-3x^2+4 }\ \ \ \ \ \ }\ \ \ \ \ \ \ \ \ \ }

$$Because, \\ \\ \\ Let roots of a cubic polynomial be$\ \alpha,\ \beta\ $and$\ \gamma. \\ \\ \\ \therefore\ (x-\alpha)(x-\beta)(x-\gamma) \\ \\ =x^3-(\alpha+\beta+\gamma)x^2+(\alpha\beta+\beta\gamma+\gamma\alpha)x-\alpha\beta\gamma \\ \\ = $ Let$\ x^3+ax^2+bx+c \\ \\ \\ -(\alpha+\beta+\gamma)=a\ \ \ \ \ \Longrightarrow\ \ \ \ \ \alpha+\beta+\gamma=-a \\ \\ \alpha\beta+\beta\gamma+\gamma\alpha=b \\ \\ -\alpha\beta\gamma=c\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \Longrightarrow\ \ \ \ \ \alpha\beta\gamma=-c

$$In this question, let the coefficient of$\ x^3\ $be 1. $ \\ \\ \\ \alpha+\beta+\gamma=3 \\ \\ -a=3 \\ \\ \therefore\ a=-3 \\ \\ \\ \alpha\beta+\beta\gamma+\gamma\alpha=0 \\ \\ \therefore\ b=0 \\ \\ \\ \alpha\beta\gamma=-4 \\ \\ -c=-4 \\ \\ \therefore\ c=4

\therefore\ $We can obtain the following cubic polynomial.$ \\ \\ \\ x^3+ax^2+bx+c \\ \\ \Rightarrow\ x^3-3x^2+0x+4 \\ \\ \Rightarrow\ \bold{x^3-3x^2+4}

       

$$Hope this helps you. \\ \\ Please mark it as the$\ \bold{brainliest}\ $if this helps. \\ \\ The answer is on my own words, and not from any source. \\ \\ Also, please ask me if you've any doubts. \\ \\ \\ \\ \\ \\ \\ \\ \ \ \ \ \

\boxed{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \bold{THANK\ YOU.\ $:-)$}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }

                         

Answered by siddhartharao77
2

Answer:

x³ - 3x² + 4

Step-by-step explanation:

Let the zeroes be a,b,c.

(i) a + b + c = 3.

(ii) ab + bc + ca = 0

(iii) abc = -4

Therefore, the cubic polynomial is:

⇒ x³ - (a + b + c)x² + (ab + bc + ca)x - abc

⇒ x³ - 3x² + 4

Hope it helps!

Similar questions