Math, asked by Radhika411, 1 year ago

plzzz ans.......Prove the following

Attachments:

Answers

Answered by rohitkumargupta
5
HELLO DEAR,

 \frac{1}{sec \alpha  + tan \alpha }  -  \frac{1}{cos \alpha }  \\  \\  =  \frac{1}{sec \alpha  + tan \alpha }  \times  \frac{sec \alpha  - tan \alpha }{sec \alpha  - tan \alpha }  -  \frac{1}{cos \alpha }  \\  \\  =  \frac{sec  \alpha  -  tan \alpha }{ {(sec}^{2}  \alpha  -  {tan}^{2} \alpha)  }  -  \frac{1}{cos \alpha }  \\  \\  = sec \alpha  - tan \alpha  - sec \alpha  \\  \\  =  - tan \alpha ................(1)


-----------------------L.H.S.--------------------------
 \frac{1}{cos \alpha }  -  \frac{1}{sec \alpha  - tan \alpha }  \\  \\  =  \frac{1}{cos \alpha }  -  \frac{1}{sec \alpha  - tan \alpha }  \times  \frac{sec \alpha   +  tan \alpha }{sec \alpha   + tan \alpha }  \\  \\  =  \frac{1}{cos \alpha }  -  \frac{sec \alpha   + tan \alpha }{ ({sec}^{2} \alpha  -  {tan}^{2}   \alpha) }  \\  \\  = sec \alpha  - sec \alpha  - tan \alpha  \\  \\  =  - tan \alpha .......(2)
-----------------------R.H.S.--------------------------

from--(1) and---(2)

L.H.S. =R.H.S



I HOPE ITS HELP YOU DEAR,
THANKS
Similar questions