Geography, asked by Radhika411, 1 year ago

plzzz ans....PROVE THE FOLLOWING

Attachments:

Answers

Answered by rohitkumargupta
1
HELLO DEAR,


we know that:-

(a³-b³)=(a-b)(a²+b²+ab)
(a³+b³)=(a+b)(a²+b²-ab)
 \frac{ {sin}^{3} \alpha   +   {cos}^{3} \alpha   }{ \sin \alpha  +  \cos \alpha  }   + \frac{ {sin}^{3} \alpha    -    {cos}^{3} \alpha   }{ \sin \alpha   -   \cos \alpha  }   \\  \\  =  \frac{(sin \alpha  + cos \alpha )( {sin  }^{2} \alpha  +  {cos}^{2}   \alpha  -   \sin \alpha  \cos \alpha  )}{( \sin \alpha  +  \cos \alpha  )}  + \frac{(sin \alpha   -  cos \alpha )( {sin  }^{2} \alpha  +  {cos}^{2}   \alpha   +    \sin \alpha  \cos \alpha  )}{( \sin \alpha   -  \cos \alpha  )}  \\  \\  = (1  - sin \alpha cos \alpha ) + (1   +  sin \alpha cos \alpha ) \\  \\  = 1 + 1 = 2
I HOPE ITS HELP YOU DEAR,
THANKS
Answered by Anonymous
1
=> LHS = [ ( sin³A + cos³A ) / ( sin A + cos A ) ] + [ ( sin³A - cos³A ) ] / ( sin A - cos A ) ]

=> [ (sin A + cos A) ( sin²A+cos²A - sinA cosA ) / ( sin A + cos A ) ] + [ (sinA - cosA) (sin²A+cos²A+sinA cosA) ] / (sin A - cos A )


=> sin A + cos A in numerator and denominator gets cancelled out

=> sin A- cos A in numerator and denominator got cancelled out


=> sin²A+cos²A - sinA cos A + sin²A+cos²A+sinA cosA

=> 1 + 1 = 2. ( -sin A cos A & + sin A cos A get cancelled out )


since , LHS= RHS

hence , PROVED

hope this helps
Similar questions