Math, asked by Radhika411, 1 year ago

plzzz ans......PROVE THE FOLLOWING ...

Attachments:

Answers

Answered by Anonymous
1
first one in question is wrong , there would be 2 in numerator not 1


hope this helps
Attachments:
Answered by rohitkumargupta
6
HELLO DEAR,

let A=ALPHA


 \frac{sin \alpha  + cos \alpha }{sin \alpha  - cos \alpha } +   \frac{sin \alpha  - cos \alpha }{sin \alpha  + cos \alpha}  \\  \\  =   \frac{ {(sin \alpha  + cos \alpha })^{2} +  {(sin \alpha  - cos \alpha })^{2}  }{( {sin}^{2} \alpha  -  {cos}^{2} \alpha )  }  \\  \\  =  \frac{ ({sin}^{2}  \alpha  +  {cos}^{2}  \alpha)  + 2sin \alpha cos \alpha  +  ({sin}^{2} \alpha  +  {cos}^{2}   \alpha)  - 2sin \alpha cos \alpha }{ {sin}^{2}  \alpha  -  {cos}^{2} \alpha  }  \\  \\  =  \frac{1 + 1}{ {sin}^{2}  \alpha  -  {cos}^{2}  \alpha }  \\  \\------------------------------------- \\  \\  =  \frac{2}{(1 -  {cos \alpha }^{2} -  {cos}^{2}  \alpha)  }  \\  \\  =  \frac{2}{(1 - 2 {cos}^{2}  \alpha) }  \\  \\ ------------------------------------- \\  \\    = \frac{2}{1 -  \frac{2}{ {sec}^{2} \alpha  } }  \\  \\  =  \frac{2}{ \frac{( {sec}^{2} \alpha  - 2) }{ {sec}^{2}  \alpha } }  \\  \\  =  \frac{2 {sec}^{2} \alpha   }{( {sec}^{2} \alpha  - 1) - 1 }  \\  \\  =  \frac{2 {sec}^{2}  \alpha }{ {tan}^{2}  \alpha  - 1}
I HOPE ITS HELP YOU DEAR,
THANKS
Similar questions