plzzz ans this ques
Attachments:
Answers
Answered by
0
[(1+tan1°)(1+tan44°)] [(1+tan2°)(1+tan43°)] ...............up to 22 pairs × (1+tan45°) =2^n,
[1+tan44°+tan1°+tan1°.tan44°] [1+tan2°+tan44°+tan2°.tan44°]................up to 22 pairs ×(1+1) =2^n, ................eq(1),
since
in each of the brackets sum of both the angles are 45°,
then
we can say that
tan(1°+44°)=(tan1°+tan44°)/(1-tan1°.tan44°),
then
1 =(tan1°+tan44°)/(1-tan1°.tan44°),
then
tan1°+tan44°=1-tan1°.tan44°,
similarly for other brackets,
so from eq(1), we have
[1+1-tan1°.tan44°+tan1°.tan44°] [1+1-tan2°.tan43°+tan2°.tan43°].........upto 22 pairs × 2 =2^n,
[1+1] [1+1]........upto 22 pairs × 2 =2^n,
then
2×2×.......upto 22 pairs × 2= 2^n,
2²² × 2 =2^n,
therefore
2²³=2^n,
then
n=23
[1+tan44°+tan1°+tan1°.tan44°] [1+tan2°+tan44°+tan2°.tan44°]................up to 22 pairs ×(1+1) =2^n, ................eq(1),
since
in each of the brackets sum of both the angles are 45°,
then
we can say that
tan(1°+44°)=(tan1°+tan44°)/(1-tan1°.tan44°),
then
1 =(tan1°+tan44°)/(1-tan1°.tan44°),
then
tan1°+tan44°=1-tan1°.tan44°,
similarly for other brackets,
so from eq(1), we have
[1+1-tan1°.tan44°+tan1°.tan44°] [1+1-tan2°.tan43°+tan2°.tan43°].........upto 22 pairs × 2 =2^n,
[1+1] [1+1]........upto 22 pairs × 2 =2^n,
then
2×2×.......upto 22 pairs × 2= 2^n,
2²² × 2 =2^n,
therefore
2²³=2^n,
then
n=23
Similar questions