plzzz ans....Thnk u....plzzz ans EIGHTH PART
Attachments:
Answers
Answered by
2
This is your answer. Hope it helps.
Attachments:
Shagufta15:
Plz can u mark it brainliest, really in need !
Answered by
0
=> TO PROVE :- abcd ( 1 / a² + 1 / b² + 1 / c² + 1 / d² ) = a² + b² + c² + d²
a , b , c , d are in continued proportion
hence , a / b = b / c = c / d
=> a / b = c / d
=> ad = bc
LHS =>
abcd ( 1 / a² + 1 / b² + 1 / c² + 1 / d² )
=> a × a × d × d ( b²c²d² + a²c²d² + a²b²d² + a²b²c² ) / a²b²c²d²
[ as , ad = bc ]
=> a²d² × ( b²c²d² + a²c²d² + a²b²d² + a²b²c² ) / a²b²c²d²
=> a²d² gets cancelled out from both numerator and denominator
=> ( b²c²d² + a²c²d² + a²b²d² + a²b²c² ) / b²c²
=> ( b²c²d² + b²c²c² + b²c²b² + b²c²a² ) / b²c²
( as , bc = ad
=> ( bc ) ² = ( ad ) ²
=> b²c² = a²d² )
=> taking b²c² common
=> b²c² ( d² + c² + b² + a² ) / b²c²
=> b²c² gets cancelled out
=> d² + c² + b² + a²
=> a² + b² + c² + d²
Since , LHS = RHS
hence , PROVED
hope this helps
a , b , c , d are in continued proportion
hence , a / b = b / c = c / d
=> a / b = c / d
=> ad = bc
LHS =>
abcd ( 1 / a² + 1 / b² + 1 / c² + 1 / d² )
=> a × a × d × d ( b²c²d² + a²c²d² + a²b²d² + a²b²c² ) / a²b²c²d²
[ as , ad = bc ]
=> a²d² × ( b²c²d² + a²c²d² + a²b²d² + a²b²c² ) / a²b²c²d²
=> a²d² gets cancelled out from both numerator and denominator
=> ( b²c²d² + a²c²d² + a²b²d² + a²b²c² ) / b²c²
=> ( b²c²d² + b²c²c² + b²c²b² + b²c²a² ) / b²c²
( as , bc = ad
=> ( bc ) ² = ( ad ) ²
=> b²c² = a²d² )
=> taking b²c² common
=> b²c² ( d² + c² + b² + a² ) / b²c²
=> b²c² gets cancelled out
=> d² + c² + b² + a²
=> a² + b² + c² + d²
Since , LHS = RHS
hence , PROVED
hope this helps
Similar questions