plzzz ans....Thnk u.....PROVE THE FOLLOWING
Attachments:
Answers
Answered by
13
HELLO DEAR,
2sec²θ-sec⁴θ-2cosec²θ+cosec⁴θ
=2sec²θ – 2cosec²θ – sec⁴θ + cosec⁴θ
= 2(sec²θ – cosec²θ) – (sec⁴θ – cosec⁴θ)
= 2(sec²θ – cosec²θ) – (sec²θ – cosec²θ)
(sec²θ + cosec²θ)
= (sec²θ – cosec²θ) [2 – (sec²θ + cosec²θ)]
= (sec²θ – cosec²θ) [2 – (1 + tan²θ + 1 + cot²θ)]
= (1 + tan²θ – 1 – cot²θ) [2 – (2 + tan²θ + cot²θ)]
= (tan²θ – cot²θ) [2 – 2 – tan²θ – cot²θ)]
= (tan²θ – cot²θ) × – [tan²θ + cot²θ)]
= (cot²θ – tan²θ) × [cot²θ + tan²θ)]
= cot⁴θ – tan⁴θ
I HOPE ITS HELP YOU DEAR,
THANKS
2sec²θ-sec⁴θ-2cosec²θ+cosec⁴θ
=2sec²θ – 2cosec²θ – sec⁴θ + cosec⁴θ
= 2(sec²θ – cosec²θ) – (sec⁴θ – cosec⁴θ)
= 2(sec²θ – cosec²θ) – (sec²θ – cosec²θ)
(sec²θ + cosec²θ)
= (sec²θ – cosec²θ) [2 – (sec²θ + cosec²θ)]
= (sec²θ – cosec²θ) [2 – (1 + tan²θ + 1 + cot²θ)]
= (1 + tan²θ – 1 – cot²θ) [2 – (2 + tan²θ + cot²θ)]
= (tan²θ – cot²θ) [2 – 2 – tan²θ – cot²θ)]
= (tan²θ – cot²θ) × – [tan²θ + cot²θ)]
= (cot²θ – tan²θ) × [cot²θ + tan²θ)]
= cot⁴θ – tan⁴θ
I HOPE ITS HELP YOU DEAR,
THANKS
Similar questions