Physics, asked by sinzoshree, 11 months ago

Plzzz answer this question..​

Attachments:

Answers

Answered by nirman95
18

Answer:

We shall consider the Projectile motion to be simultaneously occuring two linear motions (one in the X axis and another in Y axis)

Along the X axis :

d = u \cos( \theta) t

Along the Y axis :

h = u \sin( \theta) t -  \frac{1}{2} g {t}^{2}

Putting value of t from 1st equation into the 2nd equation , we get :

 =  > h = u \sin( \theta)  \{ \dfrac{d}{u \cos( \theta) }  \} -  \dfrac{1}{2} g { \{ \dfrac{d}{ u\cos( \theta) } \} }^{2}

 =  > h = d \tan( \theta)  -  \dfrac{g {d}^{2} }{2 {u}^{2} { \cos}^{2}  (\theta) }

 =  >   \dfrac{g {d}^{2} }{2 {u}^{2} { \cos}^{2}  (\theta) }  = d \tan( \theta)  - h

 =  > 2 {u}^{2}  { \cos}^{2} (  \theta) =  \dfrac{g {d}^{2} }{ \{d \tan( \theta)  - h \}}

 =  > u =  \dfrac{d}{ \cos( \theta) }  \sqrt{ \dfrac{g}{2 \{d \tan( \theta)  - h \}} }

So final answer :

 \boxed{ \red{ \bold{ \huge{u =  \dfrac{d}{ \cos( \theta) }  \sqrt{ \dfrac{g}{2 \{d \tan( \theta)  - h \}} } }}}}

Similar questions