Math, asked by vihaan95, 10 months ago

plzzz....
answer this question
and
no spam ​

Attachments:

Answers

Answered by BrainlyConqueror0901
3

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies  \frac{1 + sec \:  \theta}{sec \:  \theta}  =  \frac{ {sin}^{2}  \:  \theta}{1 - cos \:  \theta}  \\  \\ \red{\underline \bold{To \: Prove:}} \\   \tt:  \implies  \frac{1 + sec \:  \theta}{sec \:  \theta}  =  \frac{ {sin}^{2}  \:  \theta}{1 - cos \:  \theta}

• According to given question :

 \tt:  \implies  \frac{1 + sec \:  \theta}{sec \:  \theta}  =  \frac{ {sin}^{2}  \:  \theta}{1 - cos \:  \theta}  \\  \\  \bold{As \: we \: know \: that}  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bold{L.H.S} \\  \tt:  \implies  \frac{1 + sec \:  \theta}{sec  \: \theta}  \\\\ \tt\circ\:sec\:\theta=\frac{1}{cos\:\theta}\\ \\ \tt:  \implies  \frac{1 +  \frac{1}{cos \: \theta} }{ \frac{1}{cos \: \theta} }  \\  \\ \tt:  \implies  \frac{ \frac{cos \: \theta + 1}{cos \: \theta} }{ \frac{1}{cos \: \theta} }  \\  \\ \tt:  \implies  \frac{cos^{2}  + cos \:  \theta}{cos \: \theta}  \\  \\  \tt:  \implies cos \:  \theta + 1 \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bold{R.H.S} \\ \tt:  \implies  \frac{ {sin}^{2} \:  \theta }{1 - cos \: \theta} \\\\ \tt\circ\:sin^{2}\:\theta+cos^{2}\:\theta=1  \\\\  \tt:  \implies  \frac{1 -  {cos}^{2}  \:  \theta}{1 - cos \:  \theta}  \\  \\ \tt:  \implies  \frac{ {1}^{2} -  {cos}^{2}   \: \theta}{1 - cos \:  \theta}  \\\\ \tt\circ\:a^{2}-b^{2}=(a+b)(a-b) \\\\ \tt:  \implies  \frac{(1 + cos \:  \theta)(1 - cos \: \theta)}{1 - cos \:  \theta}  \\  \\ \tt:  \implies cos \:  \theta + 1 \\  \\   \green{ \huge{\tt\therefore L.H.S =R.H.S}} \\  \\   \:  \:  \:  \:  \:  \: \blue{ \huge{\bold{Proved }}}

Answered by Saby123
0

PROOF :

 </p><p>\begin{lgathered}\tt: \implies \frac{1 + sec \: \theta}{sec \: \theta} = \frac{ {sin}^{2} \: \theta}{1 - cos \: \theta} \\ \\ \bold{As \: we \: know \: that} \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \bold{L.H.S} \\ \tt: \implies \frac{1 + sec \: \theta}{sec \: \theta} \\\\ \tt\circ\:sec\:\theta=\frac{1}{cos\:\theta}\\ \\ \tt: \implies \frac{1 + \frac{1}{cos \: \theta} }{ \frac{1}{cos \: \theta} } \\ \\ \tt: \implies \frac{ \frac{cos \: \theta + 1}{cos \: \theta} }{ \frac{1}{cos \: \theta} } \\ \\ \tt: \implies \frac{cos^{2} + cos \: \theta}{cos \: \theta} \\ \\ \tt: \implies cos \: \theta + 1 \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \bold{R.H.S} \\ \tt: \implies \frac{ {sin}^{2} \: \theta }{1 - cos \: \theta} \\\\ \tt\circ\:sin^{2}\:\theta+cos^{2}\:\theta=1 \\\\ \tt: \implies \frac{1 - {cos}^{2} \: \theta}{1 - cos \: \theta} \\ \\ \tt: \implies \frac{ {1}^{2} - {cos}^{2} \: \theta}{1 - cos \: \theta} \\\\ \tt\circ\:a^{2}-b^{2}=(a+b)(a-b) \\\\ \tt: \implies \frac{(1 + cos \: \theta)(1 - cos \: \theta)}{1 - cos \: \theta} \\ \\ \tt: \implies cos \: \theta + 1 \\ \\ \orange{ \huge{\tt\therefore L.H.S =R.H.S}} \\ \\ \: \: \: \: \: \: \purple{ \huge{\bold{Proved }}}\end{lgathered}

Similar questions