Physics, asked by Anonymous, 11 months ago

plzzz answer with explanation...
Don't only answer the option...
give the explanation too...​

Attachments:

Answers

Answered by Anonymous
3

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\put(1,1.2){\line(1,0){6.5}}\end{picture}

❏ Question:-

@ Three identical bulbs are connected in as shows in the figure . When switch S is closed the power consumed by the bulb B is P . What will be the power consumed by the same bulb when the switch S is opened ?

Diagram Refer to the questionar attachment ,

❏ Solution:-

✏ Given:-

The bulbs are identical So, the resistance of each bulb is same ,

let , the resistances of the bulbs A , B , C are

\sf{R_A} = \sf{R_B} = \sf{R_C} = R (let )

When switch S is closed the power consumed by the bulb B is P .

✏ To Find:-

Power consumed by the bulb B when the switch S is opened .

✏ Explanation :-

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\put(1,1.2){\line(1,0){6.5}}\end{picture}

\underline{\boxed{\text{When S is closed}}}

In this case , current passes through the all bulbs ( A , B and C ) .

Now , Effective Resistance of the whole circuit is

\implies R'_{\red{closed}}= R_A+ \dfrac{R_B\times R_C}{R_B+R_C}

\implies R'_{\red{closed}}= R+ \dfrac{R\times R}{R+R}

\implies R'_{\red{closed}}= R+ \dfrac{ R^2}{2R}

\implies R'_{\red{closed}}= R+ \dfrac{ R}{2}

\implies R'_{\red{closed}}= \dfrac{2R+ R}{2}

\implies R'_{\red{closed}}= \dfrac{3R}{2}

∴ Current Through the circuit ,

\implies I_{\red{closed}}= \dfrac{E}{R'_{\red{closed}}}

\implies I_{\red{closed}}= \dfrac{E}{\dfrac{3R}{2}}

\implies I_{\red{closed}}= \dfrac{2E}{3R}

∴ Current Through the Bulb B,

\implies I_B=I_{\red{closed}}\times\dfrac{R_C}{R_B+R_C}

\implies I_B= \dfrac{2E}{3R}\times\dfrac{R}{R+R}

\implies I_B= \dfrac{\cancel{2}E}{3\cancel{R}}\times\dfrac{\cancel{R}}{\cancel{2}R}

\implies I_B= \dfrac{E}{3R}

Hence ,

Power consumed in the bulb B is

\implies( P_B)_{\red{closed}}= I_B^2R_B

\implies( P_B)_{\red{closed}}=\Big(\dfrac{E}{3R}\Big)^2\times R

\implies( P_B)_{\red{closed}}=\dfrac{E^2}{9\cancel{R^2}}\times\cancel{ R}

\implies( P_B)_{\red{closed}}=\dfrac{E^2}{9R}

Now according to the question ,

\implies( P_B)_{\red{closed}}= P

\implies\dfrac{E^2}{9R} = P

\implies\boxed{ E^2= 9PR} ---------(1)

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\put(1,1.2){\line(1,0){6.5}}\end{picture}

\underline{\boxed{\text{When S is free}}}

In this case Bulb B is short circuited , So current only passes through the Bulbs A and B , But no current pass through the Bulb C ,

Now , Effective Resistance of the whole circuit is

\implies R'_{\red{free}}= R_A+R_B

\implies R'_{\red{free}}= R+R

\implies R'_{\red{free}}=2R

∴ Current Through the circuit ,

\implies I_{\red{free}}= \dfrac{E}{R'_{\red{free}}}

\implies I_{\red{free}}= \dfrac{E}{2R}

\implies I_{\red{free}}= \dfrac{E}{2R}

∴ Current Through the Bulb B

\implies I_B= I_{\red{free}}=\dfrac{E}{2R}

Hence ,

Power consumed in the bulb B is

\implies( P_B)_{\red{free}}= I_B^2R_B

\implies( P_B)_{\red{free}}=\Big(\dfrac{E}{2R}\Big)^2\times R

\implies( P_B)_{\red{free}}=\dfrac{E^2}{4\cancel{R^2}}\times\cancel{ R}

\implies( P_B)_{\red{free}}=\dfrac{E^2}{4R}

\implies( P_B)_{\red{free}}=\dfrac{9P\cancel{R}}{4\cancel{R}}

\implies\large{\boxed{( P_B)_{\red{free}}=\dfrac{9P}{4}}}

➩ Option (1) \implies\large{\boxed{( P_B)_{\red{free}}=\dfrac{9P}{4}}}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\put(1,1.2){\line(1,0){6.5}}\end{picture}

Similar questions