Math, asked by jahirukhan636, 5 months ago

plzzz answers guys plz

.....

❤️❤️​

Attachments:

Answers

Answered by varadad25
4

Question:

If \displaystyle{\sf\:\dfrac{a}{b}\:=\:\dfrac{2}{3}}, then find the value of the following:

\displaystyle{\sf\:\dfrac{4a\:+\:3b}{3b}}

Answer:

\displaystyle{\boxed{\red{\sf\:\dfrac{4a\:+\:3b}{3b}\:=\:\dfrac{17}{9}}}}

Step-by-step-explanation:

We have given that, \displaystyle{\sf\:\dfrac{a}{b}\:=\:\dfrac{2}{3}}

We have to find the value of, \displaystyle{\sf\:\dfrac{4a\:+\:3b}{3b}}.

Now,

\displaystyle{\sf\:\dfrac{a}{b}\:=\:\dfrac{2}{3}}

\displaystyle{\implies\sf\:\dfrac{a\:\times\:4}{b\:\times\:3}\:=\:\dfrac{2\:\times\:4}{3\:\times\:3}\:\:\:-\:-\:-\:\left[\:Multiplying\:both\:sides\:by\:\dfrac{4}{3}\:\right]}

\displaystyle{\implies\sf\:\dfrac{4a}{3b}\:=\:\dfrac{8}{9}}

\displaystyle{\implies\sf\:\dfrac{4a\:+\:3b}{3b}\:=\:\dfrac{8\:+\:9}{9}\:\:\:-\:-\:-\:[\:By\:Componendo\:]}

\displaystyle{\implies\underline{\boxed{\red{\sf\:\dfrac{4a\:+\:3b}{3b}\:=\:\dfrac{17}{9}}}}}

Similar questions