Math, asked by mannu4174, 5 months ago

plzzz do it #no spam​

Attachments:

Answers

Answered by BrainlyEmpire
13

\large{\red{\bold{\underline{Given:}}}}

 \sf \: (i) \: Slant \: height \: of \: the \: cone (l) = 21 m \\  \\  \sf \: (ii) \: Radius \: of \: its \: base(r) = 7m

\large{\green{\bold{\underline{To \: Find:}}}}

 \sf \: (i) \: Total \: surface \: area \: of \: cone \\  \\  \sf \: (ii) \: Curved \: surface \: area \: of \: cone

\large{\blue{\bold{\underline{Formula \: Used:}}}}

 \sf \: Total  \: surface \:  area = \pi rl + \pi {r}^{2} \\  \\  \sf \: Curved \:  surface \:  area = \pi rl

\large{\red{\bold{\underline{Solution:}}}}

 \sf \: Let's \: consider \: total \: surface \: area \: as \: T.S.A. \\ \sf \: And \: curved \: surface \: area \: as \: C.S.A.

\large{\pink{\bold{\underline{Then:}}}}

 \sf \:  \longrightarrow \: T.S.A = \pi r(r + l) \\  \\  \longrightarrow \: \sf \: T.S.A =  \frac{22}{7}  \times 7(7 + 21) \\  \\  \longrightarrow \: \sf \: T.S.A =  \frac{22}{7}  \times 7(28) \\  \\  \longrightarrow \: \sf \: T.S.A =  \frac{22}{\cancel7}  \times \cancel7(28) \\  \\ \longrightarrow \: \sf \:T.S.A = 22 \times 28 \\  \\ \longrightarrow \: \sf \:T.S.A = 616 \:  {m}^{2}

\large{\green{\bold{\underline{And:}}}}

 \sf  \longrightarrow \: \sf \: C.S.A = \pi rl \\  \\ \longrightarrow \: \sf \: C.S.A =  \frac{22}{7} \times 7 \times 21 \\  \\ \longrightarrow \: \sf \: C.S.A =  \frac{22}{\cancel7} \times \cancel7 \times 21 \\  \\ \longrightarrow \: \sf \: C.S.A = 22 \times 21\\  \\ \longrightarrow \: \sf \: C.S.A = 462 \:  {m}^{2}

\large{\red{\bold{\underline{Therefore:}}}}

 \sf \: Total \: surface \: area \: of \: cone \: is \: 616 {m}^{2} \: and \\ \sf \: curved \: surface \: area \: of \: cone \: is \: 462 {m}^{2}.

Answered by Fαírү
88

\large{\pink{\bold{\underline{Given:}}}}

 \sf \: (i) \: Slant \: height \: of \: the \: cone (l) = 21 m \\  \\  \sf \: (ii) \: Radius \: of \: its \: base(r) = 7m

\large{\blue{\bold{\underline{To \: Find:}}}}

 \sf \: (i) \: Total \: surface \: area \: of \: cone \\  \\  \sf \: (ii) \: Curved \: surface \: area \: of \: cone

\large{\orange{\bold{\underline{Formula \: Used:}}}}

 \sf \: Total  \: surface \:  area = \pi rl + \pi {r}^{2} \\  \\  \sf \: Curved \:  surface \:  area = \pi rl

\large{\green{\bold{\underline{Solution:}}}}

 \sf \: Let's \: consider \: total \: surface \: area \: as \: T.S.A. \\ \sf \: And \: curved \: surface \: area \: as \: C.S.A.

\large{\purple{\bold{\underline{Then:}}}}

 \sf \:  \longrightarrow \: T.S.A = \pi r(r + l) \\  \\  \longrightarrow \: \sf \: T.S.A =  \frac{22}{7}  \times 7(7 + 21) \\  \\  \longrightarrow \: \sf \: T.S.A =  \frac{22}{7}  \times 7(28) \\  \\  \longrightarrow \: \sf \: T.S.A =  \frac{22}{\cancel7}  \times \cancel7(28) \\  \\ \longrightarrow \: \sf \:T.S.A = 22 \times 28 \\  \\ \longrightarrow \: \sf \:T.S.A = 616 \:  {m}^{2}

\large{\red{\bold{\underline{And:}}}}

 \sf  \longrightarrow \: \sf \: C.S.A = \pi rl \\  \\ \longrightarrow \: \sf \: C.S.A =  \frac{22}{7} \times 7 \times 21 \\  \\ \longrightarrow \: \sf \: C.S.A =  \frac{22}{\cancel7} \times \cancel7 \times 21 \\  \\ \longrightarrow \: \sf \: C.S.A = 22 \times 21\\  \\ \longrightarrow \: \sf \: C.S.A = 462 \:  {m}^{2}

\large{\orange{\bold{\underline{Therefore:}}}}

 \sf \: Total \: surface \: area \: of \: cone \: is \: 616 {m}^{2} \: and \\ \sf \: curved \: surface \: area \: of \: cone \: is \: 462 {m}^{2}.

Similar questions