Math, asked by shalu7936, 3 months ago

Plzzz do its urgent........​

Attachments:

Answers

Answered by BrainlyEmpire
65

⭐Explanation ⭐

 \sf \implies \: y \:  = ( \tan(x) ) {}^{ \sin(x) }  \:  +  \:  (\sin(x)) {}^{ \tan(x) }

\sf  \implies \:let \: y \:  = u \:  + v \\  \\ \sf  \implies \: \frac{dy}{dx}  =  \frac{du}{dx}  \:  +  \:  \frac{dv}{dx}  \\  \\ \sf  \implies \: \: u \:  =  (\tan(x)) {}^{ \sin(x) } \\  \\  \sf  \implies \: \: v \:  =(  \sin(x)) {}^{ \tan(x) }

\sf  \implies \:u \:  =  (\tan(x)) {}^{ \sin(x) } \\  \\  \sf  \implies \: \: taking \: log \: on \: both \: sides \: we \: get \\  \\  \sf  \implies \: ln(u)  =  ln( \tan(x) ) {}^{ \sin(x) }  \\  \\  \sf  \implies \: \frac{1}{u}  \frac{du}{dx}  =  \sin(x)  ln( \tan(x) )

\sf  \implies \: \dfrac{1}{u} \dfrac{du}{dx}  =  \sin(x) . \dfrac{ \sec {}^{2} (x) }{ \tan(x) }  \:  +  \:  ln( \tan(x) ) \cos(x) \\  \\ \sf  \implies \: \frac{du}{dx}   = u   \Bigg[ \sec(x)  \: + \:  ln( \tan(x) )  \cos(x)  \Bigg]  \\  \\   \sf \implies \:  \frac{du}{dx}   \:  =  (\tan(x)  ) {}^{ \sin(x) }\Bigg[ \sec(x)   \:  +   ln( \tan(x) )  \cos(x)  \Bigg]

 \sf \implies \: v \:  =(  \sin(x) ) {}^{ \tan(x) } \\  \\   \sf \implies \: taking \: log \: on \: both \: sides \: we \: get \\  \\  \sf \implies \:  \frac{1}{v}. \frac{dv}{dx}   =  ln( \sin(x) ) {}^{ \tan(x) } \\  \\  \sf \implies \:  \frac{1}{v} . \frac{dv}{dx}   =  \tan(x)  ln( \sin(x) )

 \sf \implies \:  \dfrac{1}{v}. \dfrac{dv}{dx}  =  \tan(x). \dfrac{ \cos(x) }{ \sin(x) }  \:  +  \:  ln( \sin(x) )  \sec {}^{2} (x)  \\  \\   \sf \implies \:  \frac{dv}{dx} = v \Bigg[1 \:  +  \:  ln( \sin(x) )  \sec {}^{2} (x) \Bigg] \\  \\  \sf \implies \:  \frac{dv}{dx} \:  =  \sin(x) {}^{ \tan(x) }\Bigg[1 \:  +  \:  ln( \sin(x) ) \sec {}^{2} (x) \Bigg]

 \sf \implies \: y \:  = u \:  + v \:  \\  \\  \sf \implies \: add \: the \: value \: of \: u \: and \: v \\  \\  \sf \implies \:  \tan(x) {}^{ \sin(x) }\Bigg[ \sec(x)  \:  +  \:  ln( \tan(x) )  \cos(x)  \Bigg] \:  +  \:  \sin(x)  {}^{ \tan(x) } \Bigg[ 1 \:  +  \:  ln( \sin(x) ) \sec {}^{2} (x) \Bigg]

Answered by XxxRAJxxX
3

Given:

  •  \rm y = (\tan x)^{\sin x} + (\sin x)^t

To find:

  •  \rm \frac{dy}{dx}

Solution:

\therefore \rm y = (\tan x)^{\sin x} + (\sin x)^t

 \implies \rm y = 1 + [(\tan x) + (\sin x)]^{\sin xt}

 \implies \rm y = 1 + [(\tan x) + (\sin x)]^{\sin xt}

 \because \bf \rm 1 + \tan A = \sin A

 \implies \rm y = sin x + (\sin x)]^{\sin xt}

 \implies \rm y = 1^{\sin xt}

Therefore,

 \implies \frac{1^{\sin xt}}{x} = 1

So,

Answer = 1.

Similar questions