plzzz explain each and every steps and answer fast
Answers
Answer:
0
Step-by-step explanation:
Given: 2^(a) = 3^(b) = 6^(-c).
Let 2^a = 3^b = 6^-c = k{∴ some constant}
(i)
2^a = k
Apply log on both sides, we get
⇒ log(2^a) = log k
∴ log aⁿ = n log a.
⇒ a log 2 = log k
⇒ log 2 = log k/a
(ii)
3^b = k
Apply log on both sides, we get
⇒ log(3^b) = log k
⇒ b log 3 = log k
⇒ log 3 = log k/b
(iii)
6^-c = k
Apply log on both sides, we get
⇒ log(6^-c) = log k
⇒ -c log 6 = log k
⇒ log 6 = log k/-c
Now,
Equation (iii) can be written as,
⇒ log 6 = log k/-c
⇒ log(2 * 3) = log k/-c
∴ log(m * n) = log m + log n
⇒ log 2 + log 3 = log k/-c
⇒ log k/a + log k/b = log k/-c
⇒ 1/a + 1/b = -1/c
⇒ 1/a + 1/b + 1/c = 0
⇒ (bc + ca + ab)/abc = 0
⇒ ab + bc + ca = 0
Therefore, the value of ab + bc + ca = 0.
Hope this helps!
Step-by-step explanation:
2^a = 6^-c => 2^a =2^-c * 3^ -c => 2^a * 3^0 = 2^ -c * 3^ -c [as, 3^0 =1}
=> a= -c and 0 = -c [if, a^m * b^k = a^n * b^t then, m=n ,k=t ]
so a= -c = 0 ....(i)
again, 3^b = 6^ -c => 3^b *2^0 = 3^ -c * 2^ -c {2^0 =1]
=> b= -c and 0= -c [as, a^m *b^k = a^n b^t => m=n , k=t ]
so, b= -c =0 ....(ii)
now, LHS = ab+bc+ca = 0+0+0 =0