Physics, asked by anshkhanna3712, 9 months ago

plzzz give answer fast. ​

Attachments:

Answers

Answered by Cosmique
3

Given :

\bullet\;\sf{\vec{F}=3\hat{i}+2\hat{j}}

\bullet\;\sf{\vec{s}=2\hat{i}+3\hat{j}}

To find :

\bullet\;\sf{angle\:between\:\vec{F}\:and\:\vec{s}\:,\:\theta=?}

Knowledge required :

  • magnitude of a vector with orthogonal notations :

\sf{Let\:\vec{A}=a\hat{i}+b\hat{j}\:\:then,}

\red{\bigstar}\;\boxed{\sf{ \:\mid\vec{ A}\mid=\sqrt{a^2+b^2}}}

  • Dot product of two vectors with orthogonal notations :

\sf{Let\,\:\vec{A}=a\hat{i}+b\hat{j}\:and\:\vec{B}=c\hat{i}+d\hat{j}\:then,}

\red{\bigstar}\;\boxed{\sf{\vec{A}\;.\;\vec{B}=ac\;+\;bd}}

  • Dot product of any two vectors :

\sf{Let\:\vec{A}\:and\:\vec{B}\:are\:two\:given\:vectors\:and\:\theta\:is\:angle\:b/w\:them\:then,}

\red{\bigstar}\;\boxed{\sf{\vec{A}\;.\;\vec{B}=| \vec{A} | .|\vec{B}| \;cos\;\theta}}

Solution :

Calculating magnitude of vector F

\implies\sf{\mid \vec{F}\mid=\sqrt{(3)^2+(2)^2}}

\implies\sf{\mid \vec{F}\mid=\sqrt{9+4}}

\underline{\underline{\red{\sf{\implies\mid \vec{F} \mid = \sqrt{13}}}}}

Calculating magnitude of vector s

\implies\sf{\mid \vec{s}\mid=\sqrt{(2)^2+(3)^2}}

\implies\sf{\mid \vec{s}\mid=\sqrt{4+9}}

\underline{\underline{\red{\sf{\implies\mid \vec{s} \mid = \sqrt{13}}}}}

Calculating Dot product of vector F and vector s

\implies\sf{\vec{F}\;.\;\vec{s}=(3)(2)+(2)(3)}

\implies\sf{\vec{F}\;.\;\vec{s}=(6)+(6)}

\underline{\underline{\red{\sf{\implies \vec{F}\;.\;\vec{s} = 12}}}}

Calculating the angle between vector F and vector s (θ)

\implies\sf{\vec{F}\;.\;\vec{s}=|\vec{F}|.|\vec{s}|\;cos\theta}

putting values

\implies\sf{12=\sqrt{13}\;.\;\sqrt{13}\;\;cos\;\theta}

\implies\sf{12=13\;\;cos\;\theta}

\implies\sf{cos\;\theta=\dfrac{12}{13}}

\implies\underline{\underline{\boxed  {\red{\sf{ \theta=cos^{-1}\left(\dfrac{12}{13}\right)}}}}}

Therefore,

Angle between vector F and vector s is

\red{\sf{\theta=cos^{-1}\left(\dfrac{12}{13}\right)}}

Similar questions