Math, asked by maa13, 6 months ago

plzzz help..... me ​

Attachments:

Answers

Answered by BrainlyEmpire
151

Given:-

tanθ = x .

To Find:-

The value of secθ.

Formula Used:-

We will use a identity ,

\large\pink{\underline{\boxed{\purple{\tt{\dag \:\:sec^2\theta\:\:-\:\:tan^2\theta\:\:=\:\:1\:\: }}}}}

Solution:-

Given equⁿ is : tanθ = x .

Now , take the given identity :

\tt:\implies sec^2\theta -\tan^2\theta=1

\tt:\implies sec^2\theta = 1 + \tan^2\theta

\tt:\implies sec\theta=\sqrt{1+\tan^2\theta}

\tt:\implies \sec\theta = \sqrt{1+(x)^2}

\underline{\boxed{\red{\tt \longmapsto \sec\theta \:\:=\:\:\sqrt{1+x^2}}}}

More to know :-

Here are some more formula .

\green{\boxed{\red{\bullet \tt  sin^2\theta+cos^2\theta=1}}}

\orange{\boxed{\red{\bullet \tt cosec^2\theta-cot^2\theta=1}}}

\pink{\boxed{\red{\bullet \tt sin(A+B)=sinA.cosB + cosA.sinB }}}

\blue{\boxed{\red{\bullet \tt sin(A-B)=sinA.cosB - cosA.sinB}}}

\purple{\boxed{\red{\bullet \tt cos(A+B)=cosA.cosB - sinA.sinB}}}

\blue{\boxed{\red{\bullet \tt cos(A-B)=cosA.cosB + sinA.sinB}}}

\blue{\boxed{\red{\bullet \tt tan(A+B)=\dfrac{tanA+tanB}{1-tanA.tanB} }}}

\green{\boxed{\red{\bullet \tt tan(A-B)=\dfrac{tanA-tanB}{1+tanA.tanB}  }}}

Answered by nandika32
0

Answer:

Answer...................

Attachments:
Similar questions