Math, asked by goti3, 5 months ago

plzzz help me....... ​

Attachments:

Answers

Answered by BrainlyEmpire
29

Given:-

● Resistance of heater = 10 ohm.

● Current in heater = 15A

● Time = 2 hours.

To find:-

● Heat developed in heater

● Power of the heater

Solution:-

1) Here resistance (r) = 10Ω

◕ Current (I) = 15A

◕ Time (t) = 2 hours.

⇒ Time (t) = (2 × 3600) s

⇒ Time (t) = 7200 s

We know that,

\dag \: \: \underline{\boxed{\sf\blue{Heat(H) = Current(I)^2 \times Resistance (R) \times Time(t) }}}\\\\ \longmapsto\sf Heat \: developed(H) = \bigg\lgroup (15)^2 \times 10 \times 7200 \bigg\rgroup \\\\ \longmapsto\sf Heat \: developed (H) = \bigg\lgroup 225 \times 10 \times 7200 \bigg\rgroup \\\\ \longmapsto\sf Heat \: developed = 16200000 J \\\\ \longmapsto\underline{\underline{\textsf{\textbf{Heat developed (H) = 16,200 kJ }}}} \\\\\\ \therefore\underline{\boxed{\textsf{Heat developed in heater = {\textbf{16200 kJ }}}}}

\rule{200}{1}

(2) We know that,

\dag\: \: \underline{\boxed{\sf\green{Power(P) = Current (I)^2 \times Resistance (R) }}}\\\\ \longmapsto\sf Power_{heater} = \bigg\lgroup (15)^2 \times 10 \bigg\rgroup \\\\ \longmapsto\sf Power_{heater} = \bigg\lgroup 225 \times 10 \bigg\rgroup \\\\ \longmapsto\sf Power_{heater} = 2250 \: Watts \\\\\longmapsto\underline{\underline{\textsf{\textbf{ Power in heater = 2.25\: Kilowatts }}}}\\\\\\ \therefore\underline{\boxed{\textsf{Power in heater = {\textbf{2.25 Kilowatts }}}}}

Answered by Anonymous
20

\large\bold{\underline{\underline{Given:-}}}

☛Resistance of heater = 10 ohm.

☛ Current in heater = 15A

☛Time = 2 hours.

\large\bold{\underline{\underline{To \: Find:-}}}

☛Heat developed in heater

☛ Power of the heater

\large\bold{\underline{\underline{Solution:-}}}

1) Here resistance (r) = 10Ω

◕ Current (I) = 15A

◕ Time (t) = 2 hours.

☛ Time (t) = (2 × 3600) s

☛ Time (t) = 7200 s

We know that,

\dag \: \: \underline{\boxed{\sf\red{Heat(H) = Current(I)^2 \times Resistance (R) \times Time(t) }}}\\\\ \longmapsto\sf Heat \: developed(H) = \bigg\lgroup (15)^2 \times 10 \times 7200 \bigg\rgroup \\\\ \longmapsto\sf Heat \: developed (H) = \bigg\lgroup 225 \times 10 \times 7200 \bigg\rgroup \\\\ \longmapsto\sf Heat \: developed = 16200000 J \\\\ \longmapsto\underline{\underline{\textsf{\textbf{Heat developed (H) = 16,200 kJ }}}} \\\\\\ \therefore\underline{\boxed{\textsf{Heat developed in heater = {\textbf{16200 kJ }}}}}

\rule{200}{1}

(2) We know that,

\dag\: \: \underline{\boxed{\sf\pink{Power(P) = Current (I)^2 \times Resistance (R) }}}\\\\ \longmapsto\sf Power_{heater} = \bigg\lgroup (15)^2 \times 10 \bigg\rgroup \\\\ \longmapsto\sf Power_{heater} = \bigg\lgroup 225 \times 10 \bigg\rgroup \\\\ \longmapsto\sf Power_{heater} = 2250 \: Watts \\\\\longmapsto\underline{\underline{\textsf{\textbf{ Power in heater = 2.25\: Kilowatts }}}}\\\\\\ \therefore\underline{\boxed{\textsf{Power in heater = {\textbf{2.25 Kilowatts }}}}}

Similar questions