Math, asked by sapna140886, 4 months ago

Plzzz plzz solve it....

URGENT....plzz​

Attachments:

Answers

Answered by Anonymous
7

Given:-

\sf{\sqrt{\dfrac{1+sin\theta}{1-sin\theta}} + \sqrt{\dfrac{1-sin\theta}{1+sin\theta}} = 2 sec\theta}

To:-

Prove the identity.

Solution:-

Taking LHS,

\sf{\sqrt{\dfrac{1+sin\theta}{1-sin\theta}} + \sqrt{\dfrac{1-sin\theta}{1+sin\theta}}}

By Rationalizing the denominator,

\sf{\sqrt{\dfrac{1+sin\theta}{1-sin\theta}\times \dfrac{1+sin\theta}{1+sin\theta}} + \sqrt{\dfrac{1-sin\theta}{1+sin\theta}\times\dfrac{1-sin\theta}{1-sin\theta}}}

= \sf{\sqrt{\dfrac{(1+sin\theta)^2}{1-sin^2\theta}} + \sqrt{\dfrac{(1-sin\theta)^2}{1-sin^2\theta}}}

= \sf{\sqrt{\dfrac{(1+sin\theta)^2}{cos^2\theta}}+\sqrt{\dfrac{(1-sin\theta)^2}{cos^2\theta}}}

= \sf{\dfrac{1+sin\theta}{cos\theta} + \dfrac{1-sin\theta}{cos\theta}}

= \sf{\dfrac{1+sin\theta+1-sin\theta}{cos\theta}}

= \sf{\dfrac{2 + \cancel{sin\theta} - \cancel{sin\theta}}{cos\theta}}

= \sf{\dfrac{2}{cos\theta}}

= \sf{2\times\dfrac{1}{cos\theta}}

= \sf{2\times sec\theta}

= \sf{2sec\theta}

Taking RHS,

\sf{2sec\theta}

Hence LHS = RHS [Proved]

______________________________________

Points To Remember!!!

  • \sf{\dfrac{1}{cosec\theta} = sin\theta}

  • \sf{\dfrac{1}{sin\theta} = cosec\theta}

  • \sf{\dfrac{1}{sec\theta} = cos\theta}

  • \sf{\dfrac{1}{cos\theta} = sec\theta}

  • \sf{\dfrac{1}{cot\theta} = tan\theta}

  • \sf{\dfrac{1}{tan\theta} = cot\theta}

  • \sf{\dfrac{sin\theta}{cos\theta} = tan\theta}

  • \sf{\dfrac{cos\theta}{sin\theta} = cot\theta}

  • \sf{cos^2\theta + sin^2\theta = 1}

  • \sf{1+tan^2\theta = sec^2\theta}

  • \sf{1+cot^2\theta = cosec^2\theta}

______________________________________

Similar questions