Math, asked by kishu29, 4 months ago

Plzzz solve it.....​

Attachments:

Answers

Answered by BrainlyEmpire
1

To prove :-

\sf  \tan(30^{\circ} )  \:  =  \:  \dfrac{ \tan(60 ^{\circ} ) -  \tan(30 ^{\circ} )  }{1 +  \tan(30 ^{\circ} ) \times  \tan(30 ^{\circ})  }

Trigonometric table :—

\Large{ \begin{tabular}{|c|c|c|c|c|c|} \cline{1-6} \theta & \sf 0^{\circ} & \sf 30^{\circ} & \sf 45^{\circ} & \sf 60^{\circ} & \sf 90^{\circ} \\ \cline{1-6} $ \sin $ & 0 & $\dfrac{1}{2 }$ & $\dfrac{1}{ \sqrt{2} }$ & $\dfrac{ \sqrt{3}}{2}$ & 1 \\ \cline{1-6} $ \cos $ & 1 & $ \dfrac{ \sqrt{ 3 }}{2} } $ & $ \dfrac{1}{ \sqrt{2} } $ & $ \dfrac{ 1 }{ 2 } $ & 0 \\ \cline{1-6} $ \tan $ & 0 & $ \dfrac{1}{ \sqrt{3} } $ & 1 & $ \sqrt{3} $ & $ \infty $ \\ \cline{1-6} \cot & $ \infty $ &$ \sqrt{3} $ & 1 & $ \dfrac{1}{ \sqrt{3} } $ &0 \\ \cline{1 - 6} \sec & 1 & $ \dfrac{2}{ \sqrt{3}} $ & $ \sqrt{2} $ & 2 & $ \infty $ \\ \cline{1-6} \csc & $ \infty $ & 2 & $ \sqrt{2 } $ & $ \dfrac{ 2 }{ \sqrt{ 3 } } $ & 1 \\ \cline{1 - 6}\end{tabular}}

{ User using through app refer to attached image for the same }

Solution :-

LHS ➝

 \sf  \tan( {30}^{ \circ} )  \:  =  \:  \dfrac{1}{ \sqrt{ 3} }

_______________________________________________

RHS ➝

\sf \implies  \dfrac{ \sqrt{3} -  \dfrac{1}{ \sqrt{3} }  }{1 + ( \sqrt{3} \times  \dfrac{1}{ \sqrt{3} })  }  \\  \\  \sf \: takimg \: lcm \: we \: get \\  \\ \sf \implies  \dfrac{ \dfrac{( \sqrt{3}  \times  \sqrt{3}) - (1 \times 1) }{  \sqrt{3} } }{1 + 1}  \\  \\ \sf \implies  \dfrac{ \dfrac{3 - 1}{ \sqrt{3} } }{2}  \\  \\ \sf \implies  \dfrac{2}{ \sqrt{3} }  \times  \dfrac{1}{2}  \\  \\ \sf \implies  \dfrac{1}{ \sqrt{3} }

_______________________________________________

➝ LHS = (1/√3) = RHS

➝ LHS = RHS

Hence proved!

Attachments:
Answered by Anonymous
25

Answer:

To prove :-

\sf  \tan(30^{\circ} )  \:  =  \:  \dfrac{ \tan(60 ^{\circ} ) -  \tan(30 ^{\circ} )  }{1 +  \tan(30 ^{\circ} ) \times  \tan(30 ^{\circ})  }

Solution :-

LHS ➝

 \sf  \tan( {30}^{ \circ} )  \:  =  \:  \dfrac{1}{ \sqrt{ 3} }

_______________________________________________

RHS ➝

\sf \implies  \dfrac{ \sqrt{3} -  \dfrac{1}{ \sqrt{3} }  }{1 + ( \sqrt{3} \times  \dfrac{1}{ \sqrt{3} })  }  \\  \\  \sf \: takimg \: lcm \: we \: get \\  \\ \sf \implies  \dfrac{ \dfrac{( \sqrt{3}  \times  \sqrt{3}) - (1 \times 1) }{  \sqrt{3} } }{1 + 1}  \\  \\ \sf \implies  \dfrac{ \dfrac{3 - 1}{ \sqrt{3} } }{2}  \\  \\ \sf \implies  \dfrac{2}{ \sqrt{3} }  \times  \dfrac{1}{2}  \\  \\ \sf \implies  \dfrac{1}{ \sqrt{3} }

_______________________________________________

➝ LHS = (1/√3) = RHS

➝ LHS = RHS

Hence proved!

Similar questions