Math, asked by Sahil8054, 1 year ago

plzzz solve it...............

Attachments:

Answers

Answered by siddhartharao77
5
Given : a = 3 - 2 \sqrt{2}

Now,

 \frac{1}{a} =  \frac{1(3+ 2 \sqrt{2} )}{(3 - 2 \sqrt{2} )(3 + 2 \sqrt{2}) }

                        =  \frac{3 + 2 \sqrt{2} }{(3)^2 - (2 \sqrt{2})^2 }

                        =  \frac{3 + 2 \sqrt{2} }{9 - 8}

                        = 3 + 2 \sqrt{2}



Now,

a^2 = (3 - 2 \sqrt{2} )^2

              = = 9 - 12 \sqrt{2} + 8

              = 17 - 12 \sqrt{2}



Now,

 \frac{1}{a^2} =  \frac{1 * (17 + 12 \sqrt{2}) }{(17-12 \sqrt{2})(17 + 12 \sqrt{2} ) }

=  \frac{(17 + 12 \sqrt{2}) }{(17)^2 - (12 \sqrt{2})^2 }

=  \frac{17 + 12 \sqrt{2} }{289 - 288}

=  \frac{17 + 12 \sqrt{2} }{1}

= 17 + 12 \sqrt{2}


Therefore,

a^2 -  \frac{1}{a^2} = (17 - 12 \sqrt{2} ) - (17 + 12 \sqrt{2} )

                                    = = 17 - 12 \sqrt{2} - 17 - 12 \sqrt{2}

                                    = - 24 \sqrt{2}



Hope this helps!

Sahil8054: for u
siddhartharao77: Thank You So much sis for saying that word..
siddhartharao77: Haha..he cant mark now sis..Because the other is deleted.. Now , should wait for 3 more days to get that option.. :-(:-(
Sahil8054: ya
Sahil8054: and i will choose ur ans brainliest
Sahil8054: like I did early
Similar questions