Math, asked by zishu35, 6 months ago

plzzz solve it help me.. ​

Attachments:

Answers

Answered by BrainlyEmpire
11

Answer :

\large{\star\:\:\boxed{\bf{S_{250}\:=\:62500}}\:\:\star}

Explanation :

\dag Given  : –

A.P.  :- 1 , 3 , 5 , 7 , . . .

where a = 1 , d = 2 and n = 499 .

\dag To Find  : –

Sum of all the Terms of this A.P.

\dag Formulae Applied :–

\boxed{\star\:\:\bf{S_{n}\:=\:\dfrac{n}{2}\:\times\:(a\:+\:l) }\:\:\star}

\boxed{\star\:\:\bf{a_n\:=\:a\:+\:(n\:-\:1)d }\:\:\star}

\dag Solution : –

☆ Firstly , we will find the number of Terms :

We have ,

a = 1

d= 2

n = 250

Putting these values in the Formula :

\rightarrow\sf{a_n\:=\:a\:+\:(n\:-\:1)d}

\rightarrow\sf{a_{250}\:=\:1\:+\:(250\:-\:1)(2)}

\rightarrow\sf{a_{250}\:=\:1\:+\:(249\:\times\:2)}

\rightarrow\sf{a_{250}\:=\:1\:+\:498}

\rightarrow\bf{a_{250}\:=\:499}

★ Then , we have to find now the Sum of all the Terms of this A.P. :

We have ,

a = 1

l = 499

n = 250

Putting these values in the Formula :

\rightarrow\sf{S_{n}\:=\:\dfrac{n}{2}\:\times\:(a\:+\:l) }

\rightarrow\sf{S_{250}\:=\:\dfrac{250}{2}\:\times\:(1\:+\:499) }

\rightarrow\sf{S_{250}\:=\:\dfrac{250}{2}\:\times\:500 }

\rightarrow\sf{S_{250}\:=\:250\:\times\:250 }

\rightarrow\boxed{\bf{S_{250}\:=\:62500 }}

∴ The Sum of First 250 odd Natural Numbers is 62500 .

Answered by Anonymous
36

Answer:

The number series 1, 3, 5, 7, 9, .  .  .  .  , 499.

The first term a = 1

The common difference d = 2

Total number of terms n = 250

apply the input parameter values in the AP formula

Sum = n/2 x (a + Tn)

= 250/2 x (1 + 499)

= (250 x 500)/ 2

= 125000/2

1 + 3 + 5 + 7 + 9 +..........+ 499 = 62500

Therefore, 62500 is the sum of first 250 odd numbers.

hope this helps you

Similar questions