Math, asked by lonely82, 5 months ago

Plzzz solve the problem​

Attachments:

Answers

Answered by BrainlyEmpire
26

\sf \bold{\underline{Question:-}}\\ \\

Find the median of the following data :

⠀⠀⠀⠀⠀⠀⠀

\begin{tabular}{|c|c|c|c|c|c|c|c|}\cline{1-8} Class&20 - 30& 30 - 40  & 40 - 50&50 - 60&60 - 70&70 - 80&80 - 90\\\cline{1-8}Frequency&5&15&25&20&7&8&10\\\cline{1-8}\end{tabular}

⠀━━━━━━━━━━━━━━━━━━━━━━━━

\sf \bold{\underline{AnswEr:-}}\\ \\

\boxed{\begin{array}{cccc}\bf Class\: interval&\bf Frequency\: (f) &\bf C.F\\\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad\qquad}{}\\\sf 20 - 30&\sf 5&\sf 5\\\\\sf 30 - 40 &\sf 15&\sf 20\\\\\sf 40 - 50&\sf 25&\sf 45\\\\\sf 50 - 60&\sf 20&\sf 65\\\\\sf 60 - 70&\sf 7&\sf 72\\\\\sf 70 - 80&\sf 8&\sf 80\\\\\sf 80 - 90&\sf 10&\sf 90\\\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad\qquad}{}\\\sf & \bf \sum f = 90& \end{array}}

⠀⠀⠀⠀⠀⠀⠀

We know that,

⠀⠀⠀⠀⠀⠀⠀

\boxed{\begin{minipage}{6cm}$\bigstar$\:\:\sf Median = l + $\sf\dfrac{\frac{n}{2}-C.f.}{f}\times h\\\\Here: \\ \\1)\:N =  \sum \:f= 90\\2)\:l=Lower\:limit\:of\:median\:class=40\\3)\:C.f.=Cumulative\:frequency\:of\:class\\preceeding\:the\:median\:class=20\\4)\:f= frequency\:of\:median\:class=25\\5)\:h= Class\:interval =40-30=10\end{minipage}}

⠀━━━━━━━━━━━━━━━━━━━━━━━━

\underline{\bigstar\:\boldsymbol{According\; to \;the \;Question :}} \\  \\

\dashrightarrow\sf\:\:\purple{Median = l +\dfrac{\frac{n}{2}-C.f.}{f}\times h}\\\\\\\dashrightarrow\sf\:\:Median = 40 +\bigg\lgroup\dfrac{45-20}{25}\times10\bigg\rgroup\\\\\\\dashrightarrow\sf\:\:Median = 40 +\bigg\lgroup \cancel{\dfrac{25}{25}}\times10\bigg\rgroup\\\\\\\dashrightarrow\sf\:\:Median = 40 +10\\\\\\\dashrightarrow\:\:\underline{\boxed{\pink{\sf Median = 50}}}\;\bigstar

⠀⠀⠀⠀⠀⠀⠀

\therefore\:\underline{\textsf{Median of given data is \textbf{50}}}.

Answered by CharmingHeart19
4

\sf \bold{\underline{Question:-}}\\ \\

Find the median of the following data :

⠀⠀⠀⠀⠀⠀⠀

\begin{tabular}{|c|c|c|c|c|c|c|c|}\cline{1-8} Class&20 - 30& 30 - 40  & 40 - 50&50 - 60&60 - 70&70 - 80&80 - 90\\\cline{1-8}Frequency&5&15&25&20&7&8&10\\\cline{1-8}\end{tabular}

⠀━━━━━━━━━━━━━━━━━━━━━━━━

\sf \bold{\underline{AnswEr:-}}\\ \\

\boxed{\begin{array}{cccc}\bf Class\: interval&\bf Frequency\: (f) &\bf C.F\\\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad\qquad}{}\\\sf 20 - 30&\sf 5&\sf 5\\\\\sf 30 - 40 &\sf 15&\sf 20\\\\\sf 40 - 50&\sf 25&\sf 45\\\\\sf 50 - 60&\sf 20&\sf 65\\\\\sf 60 - 70&\sf 7&\sf 72\\\\\sf 70 - 80&\sf 8&\sf 80\\\\\sf 80 - 90&\sf 10&\sf 90\\\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad\qquad}{}\\\sf & \bf \sum f = 90& \end{array}}

⠀⠀⠀⠀⠀⠀⠀

We know that,

⠀⠀⠀⠀⠀⠀⠀

\boxed{\begin{minipage}{6cm}$\bigstar$\:\:\sf Median = l + $\sf\dfrac{\frac{n}{2}-C.f.}{f}\times h\\\\Here: \\ \\1)\:N =  \sum \:f= 90\\2)\:l=Lower\:limit\:of\:median\:class=40\\3)\:C.f.=Cumulative\:frequency\:of\:class\\preceeding\:the\:median\:class=20\\4)\:f= frequency\:of\:median\:class=25\\5)\:h= Class\:interval =40-30=10\end{minipage}}

⠀━━━━━━━━━━━━━━━━━━━━━━━━

\underline{\bigstar\:\boldsymbol{According\; to \;the \;Question :}} \\  \\

\dashrightarrow\sf\:\:\purple{Median = l +\dfrac{\frac{n}{2}-C.f.}{f}\times h}\\\\\\\dashrightarrow\sf\:\:Median = 40 +\bigg\lgroup\dfrac{45-20}{25}\times10\bigg\rgroup\\\\\\\dashrightarrow\sf\:\:Median = 40 +\bigg\lgroup \cancel{\dfrac{25}{25}}\times10\bigg\rgroup\\\\\\\dashrightarrow\sf\:\:Median = 40 +10\\\\\\\dashrightarrow\:\:\underline{\boxed{\pink{\sf Median = 50}}}\;\bigstar

⠀⠀⠀⠀⠀⠀⠀

\therefore\:\underline{\textsf{Median of given data is \textbf{50}}}.

Similar questions