Physics, asked by nikki6621, 4 months ago

Plzzz solve the problem​

Attachments:

Answers

Answered by BrainlyEmpire
2

Given :-

If x + iy = (a + i) / (a - i) , then prove that ay - 1 = x

Solution :-

\sf x+iy=\dfrac{a+i}{a-i}

On rationalizing the denominator ,

:\implies \sf x+iy=\dfrac{a+i}{a-i}\times \dfrac{a+i}{a+i}

:\implies \sf x+iy=\dfrac{(a+i)^2}{a^2-i^2}

\\ :\implies \sf x+iy=\dfrac{a^2+i^2+2ai}{a^2+1}\ \; [\ \because i^2=-1\ ]\\

\\ :\implies \sf x+iy=\dfrac{a^2-1}{a^2+1}+ \dfrac{2ai}{a^2+1}\ \; [\ \because i^2=-1\ ]\\

\\ :\implies \sf x+iy=\dfrac{a^2-1}{a^2+1}+i\bigg( \dfrac{2a}{a^2+1} \bigg)\\

From this , We have ,

\bullet\ \; \bf \orange{x=\dfrac{a^2-1}{a^2+1}\ \&\ y=\dfrac{2a}{a^2+1}}

Let's calculate ay - 1 ,

:\implies \sf a\times \dfrac{2a}{a^2+1}-1

:\implies \sf \dfrac{2a^2}{a^2+1}-1

:\implies \sf \dfrac{2a^2-(a^2+1)}{a^2+1}

:\implies \sf \dfrac{a^2-1}{a^2+1}

:\implies \sf x\ \; \bigstar

So , ay - 1 = x

Hence proved

Answered by Anonymous
24

\sf{x+iy=\dfrac{a+i}{a-i}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf{x+iy=\Bigg(\dfrac{a+i}{a-i}\Bigg)\Bigg(\dfrac{a+i}{a+i}\Bigg)=\dfrac{{(a+i)}^{2}}{a^2+1}=\dfrac{a^2-1}{a^2+1}+\Bigg(\dfrac{2a}{a^2+1}\Bigg)i}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf{\implies{x=\dfrac{a^2-1}{a^2+1}\:and\:y=\dfrac{2a}{a^2+1}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

{\therefore{\sf{\:x+1=\dfrac{a^2-1}{a^2+1}+1=\dfrac{2a^2}{a^2+1}=a\Bigg(\dfrac{2a}{a^2+1}\Bigg)=ay}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\therefore\sf{\:ay-1=x}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Hence proved..

Similar questions