Plzzz solve the problem......
Answers
QUESTION:-
- Two blocks of mass 1 kg each are joined by a string and placed on two inclined planes. The string passess over a pulley. Co efficient of friction between the blocks and the two planes is 0.1. Find (i) acceleration of the system and (ii) tension in the string.
ANSWER:-
- (i) Acceleration of the system = 0.244 m/s².
- (ii) Tension in the string = 6 N.
GIVEN:-
- Two blocks of mass 1 kg each are joined by a string and placed on two inclined planes.
- The string passess over a pulley.
- Co efficient of friction between the blocks and the two planes is 0.1.
EXPLANATION:-
- By free body diagram,
- mg sin θ - T - μ mg cos θ = ma
m = 1 kg
μ = 0.1
θ = 45°
g sin 45° - T - 0.1 g cos 45° = a
T = g sin 45° - 0.1 g cos 45° - a
By free body diagram,
T - mg sin θ - μ mg cos θ = ma
m = 1 kg
μ = 0.1
θ = 30°
T - g sin 30° - 0.1 g cos 30° = a
T = g sin 30° + 0.1 g cos 30° + a
Equate both the T values:-
g sin 30° + 0.1 g cos 30° + a = g sin 45° - 0.1 g cos 45° - a
2a = g sin 45° - 0.1 g cos 45° - g sin 30° - 0.1 g cos 30°
2a = g(sin 45° - 0.1(cos 45°) - sin 30° - 0.1 cos 30°)
g = 9.8 m/s²
2a = 9.8(sin 45° - 0.1(cos 45°) - sin 30° - 0.1 cos 30°)
a = 4.9(sin 45° - 0.1(cos 45°) - sin 30° - 0.1 cos 30°)
sin 45° = cos 45° = 1/√2 = 0.707
sin 30° = 1/2 = 0.5
cos 30° = √3/2 = 1.732/2 = 0.866
a = 4.9(0.707 - 0.1(0.707) - 0.5 - 0.1(0.866))
a = 4.9(0.707 - 0.0707 - 0.5 - 0.0866)
a = 4.9(0.707 - 0.6573)
a = 4.9(0.0497)
a = 0.2435 ≈ 0.244 m/s²
T = g sin 30° + 0.1 g cos 30° + a
T = 9.8(1/2) + 0.1(9.8) √3/2 + 0.244
T = 4.9 + 9.8(0.0866) + 0.244
T = 4.9 + 0.848 + 0.244
T = 5.99 ≈ 6 N
• Hence tension in the string = 6 N and acceleration of the system = 0.244 m/s².
Answer:
ANSWER:-
(i) Acceleration of the system = 0.244 m/s².
(ii) Tension in the string = 6 N.
EXPLANATION:-
By free body diagram,
mg sin θ - T - μ mg cos θ = ma
m = 1 kg
μ = 0.1
θ = 45°
g sin 45° - T - 0.1 g cos 45° = a
T = g sin 45° - 0.1 g cos 45° - a
By free body diagram,
T - mg sin θ - μ mg cos θ = ma
m = 1 kg
μ = 0.1
θ = 30°
T - g sin 30° - 0.1 g cos 30° = a
T = g sin 30° + 0.1 g cos 30° + a
Equate both the T values:-
g sin 30° + 0.1 g cos 30° + a = g sin 45° - 0.1 g cos 45° - a
2a = g sin 45° - 0.1 g cos 45° - g sin 30° - 0.1 g cos 30°
2a = g(sin 45° - 0.1(cos 45°) - sin 30° - 0.1 cos 30°)
g = 9.8 m/s²
2a = 9.8(sin 45° - 0.1(cos 45°) - sin 30° - 0.1 cos 30°)
a = 4.9(sin 45° - 0.1(cos 45°) - sin 30° - 0.1 cos 30°)
sin 45° = cos 45° = 1/√2 = 0.707
sin 30° = 1/2 = 0.5
cos 30° = √3/2 = 1.732/2 = 0.866
a = 4.9(0.707 - 0.1(0.707) - 0.5 - 0.1(0.866))
a = 4.9(0.707 - 0.0707 - 0.5 - 0.0866)
a = 4.9(0.707 - 0.6573)
a = 4.9(0.0497)
a = 0.2435 ≈ 0.244 m/s²
T = g sin 30° + 0.1 g cos 30° + a
T = 9.8(1/2) + 0.1(9.8) √3/2 + 0.244
T = 4.9 + 9.8(0.0866) + 0.244
T = 4.9 + 0.848 + 0.244
T = 5.99 ≈ 6 N