plzzz solve this fast ( question no.12)
Answers
Note:
• tan(A+B) = (tanA + tanB) / (1 – tanA•tanB)
• tan(A–B) = (tanA – tanB) / (1 + tanA•tanB)
• tan2A = 2tanA / (1 – tan²A)
Solution:
To prove : tan50° = tan40° + 2tan10°
Proof :
We know that ;
tan(A–B) = (tanA – tanB) / (1 + tanA•tanB)
Thus,
Putting A = 50° and B = 40° in the above formula , we get ;
=> tan(50° - 40°)
= (tan50° - tan40°) / (1 + tan50°tan40°)
=> tan10°
= (tan50° - tan40°) / (1 + tan50°tan40°)
=> tan10°
= (tan50° - tan40°) / (1 + tan50°cot50°)
{ Since , tan∅ = cot (90°-∅)
Thus , tan40° = cot(90°-40°) = cot50° }
=> tan10°
= (tan50° - tan40°) / (1 + 1)
{ Since , cot∅ = 1/tan∅
Thus , tan∅cot∅ = 1 }
=> tan10° = (tan50° - tan40°) / 2
=> 2tan10° = tan50° - tan40
=> 2tan10° + tan40° = tan50°
=> tan50° = tan40° + 2tan10°
Hence Proved .
Answer is in the photo attached check it.. I hope it will help you!!!!!