Math, asked by muvasreetham22, 1 year ago


plzzz solve this...
I'll mark u brainliest.....

IF U DONT KNOW THEN DONT ANSWER.....


Q. Prove that
 \tan \alpha (1 +  \sec2 \alpha ) (1 +  \sec4 \alpha ) =   \tan(4 \alpha )

Answers

Answered by rishu6845
9

Answer:

Plzz give me brainliest ans and plzzzz follow me

Attachments:
Answered by Anonymous
23

 \tan \alpha (1 + \sec2 \alpha ) (1 + \sec4 \alpha ) = \tan(4 \alpha )

___________ [ GIVEN ]

We have to prove that L.H.S. = R.H.S.

_____________________________

Taking L.H.S.

i.e.

=>  \tan \alpha (1 + \sec2 \alpha ) (1 + \sec4 \alpha )

We know that

secA = 1/cosA

=> \tan \alpha (1 +  \dfrac{1}{ \cos2 \alpha }) (1 +  \dfrac{1}{ \cos4 \alpha} )

=> \tan \alpha (\dfrac{cos2 \alpha  \:  +  \: 1}{ \cos2 \alpha }) ( \dfrac{cos4 \alpha  \:  +  \: 1}{ \cos4 \alpha} )

Cos2A = 2 cos²A - 1

=> \tan \alpha (\dfrac{2cos^{2} \alpha  \:  -  \: 1 \:  +  \: 1}{ \cos2 \alpha }) ( \dfrac{cos4 \alpha  \:  +  \: 1}{ \cos4 \alpha} )

=> \tan \alpha (\dfrac{2cos^{2} \alpha}{ \cos2 \alpha }) ( \dfrac{cos4 \alpha  \:  +  \: 1}{ \cos4 \alpha} )

=> \tan \alpha (\dfrac{2cos^{2} \alpha  \:  -  }{ \cos2 \alpha }) ( \dfrac{2cos^{2} 2 \alpha  \:  -  \: 1 \:  +  \: 1}{ \cos4 \alpha} )

=> \tan \alpha (\dfrac{2cos^{2} \alpha }{ \cos2 \alpha }) ( \dfrac{2cos^{2} 2 \alpha}{ \cos4 \alpha} )

=> \dfrac{sin \alpha}{cos\alpha} (\dfrac{2cos^{2} \alpha }{ \cos2 \alpha }) ( \dfrac{2cos^{2} 2 \alpha}{ \cos4 \alpha} )

=> sin \alpha \:  (\dfrac{2cos\alpha   }{ \cos2 \alpha }) \:  ( \dfrac{2cos^{2} 2 \alpha}{ \cos4 \alpha} )

=> sin \alpha \:  (2cos\alpha) \:  ( \dfrac{2cos 2 \alpha}{ \cos4 \alpha} )

=> ( \dfrac{2sin \alpha  \: cos \alpha( 2cos 2 \alpha)}{ \cos4 \alpha} )

=> ( \dfrac{sin 2\alpha  \:( 2cos 2 \alpha)}{ \cos4 \alpha} )

=> (  \dfrac{2sin 2\alpha  \:cos 2 \alpha}{ \cos4 \alpha} )

tan4A = 2sin2A cos2A

=> (  \dfrac{sin 4\alpha}{ \cos4 \alpha} )

=> tan 4\alpha

L.H.S. = R.H.S.

______ [ HENCE PROVED ]

______________________________

Similar questions