Physics, asked by Anonymous, 11 months ago

plzzzz answer it...
I don't need only option I need the explanation...

Attachments:

Answers

Answered by AbdJr10
2

Answer:

hope the answer will help you

Attachments:
Answered by Anonymous
22

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\bf{\blue{\underline{\underline{\ \ {\bf{\red{COVID-19}}}}}}}

\setlength{\unitlength}{0.11cm}}\begin{picture}(12,4)\thicklines\put(-10,9){\line(6,5){11}}\put(-11.4,9){\line(6,5){12.5}}\put(-10,9.0){\line(-1,0){1.4}}\put(12,9){\line(-6,5){5.3}}\put(13.4,9.0){\line(-6,5){5.4}}\put(13.4,8.9){\line(-1,0){1.5}}\put(5.8,14.1){\line(-6,5){4.8}}\put(4.5,16.55){\line(-6,5){3.5}}\qbezier(1,10)(-10,15)(1,1)\qbezier(1,10)(10,15)(1,1)\put(4.5,16.47){\line(0,1){2}}\put(5.75,14.){\line(0,1){3}}\put(6.6,13.3){\line(0,1){3.7}}\put(8,13.5){\line(0,1){5}}\put(4.5,18.5){\line(1,0){3.6}}\put(6.7,16.9){\line(-1,0){1}}\put(7,3){$\#StayHome$}\put(9.5,0){$StayHomeSaveLives.us$}\end{picture}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

❏ Question:-

Find the Magnetic Intensity at the point O due to the whole loop

Fig :-

\setlength{\unitlength}{0.2 cm}}\begin{picture}(12,4)\thicklines\put(25,27.4){$b$}\put(32.8,20){$b$}\put(17,13.5){\circle*{0.4}}\put(17,13.5){\line(-3,-2){2.5}}\qbezier(21,12.5)(9,9)(17,17)\put(16.8,13.95){$O$}\put(17,27){\line(1,0){15}}\put(17,27){\vector(1,0){7.5}}\put(32,27){\line(0,-1){14.5}}\put(32.05,27){\vector(0,-1){7.5}}\put(21,12.5){\line(1,0){11}}\put(21,12.5){\vector(1,0){5}}\put(17,27){\line(0,-1){10}}\put(17,27){\vector(0,-1){4.5}}\put(15,21){$i$}\put(15,13.2){$a$}\put(16,28){$A$}\put(32,28){$B$}\put(32,10){$C$}\put(20,10){$D$}\put(12,10){$E$}\put(15,17){$F$}\end{picture}

❏ Solution:-

\blacksquare\:\:\:\underline\red{\text{For AB , M.I. at point O is }}

\longrightarrow \theta_1=0\degree\:\:and\:\:\theta_2=45\degree

\therefore \:B_{AB} =\dfrac{\mu_oi}{4\pi b}(\sin0\degree+\sin45\degree)

\implies B_{AB} =\dfrac{\mu_oi}{4\pi b}(0+\dfrac{1}{\sqrt{2}})

\implies B_{AB} =\dfrac{\mu_oi}{4\sqrt{2}\pi b} ( downward )

\blacksquare\:\:\:\underline\red{\text{For BC ,  M.I. at point O is }}

\longrightarrow \theta_2=0\degree\:\:and\:\:\theta_1=45\degree

So , similarly

\implies B_{BC} =\dfrac{\mu_oi}{4\sqrt{2}\pi b} ( downward )

\blacksquare\:\:\:\underline\red{\text{For CD and AF , M.I. at point O is }}

\longrightarrow \theta_1=0\:\:and\:\:\theta_2=0\degree

\therefore \:\:B_{CD}=B_{AF} =\dfrac{\mu_oi}{4\pi b}(\sin0\degree+\sin0\degree)

\implies B_{CD}=B_{AF}  =\dfrac{\mu_oi}{4\pi b}\times 0

\implies B_{CD}=B_{AF} = 0

\blacksquare\:\:\:\underline\red{\text{For the circle DF , M.I. at point O is }}

\longrightarrow \theta_1=270\degree=\dfrac{3\pi}{2}

\therefore\:\: B_{DF} =\dfrac{\mu_oi}{4\cancel{\pi}a}\times\dfrac{3\cancel{\pi}}{2}

\implies B_{DF} =\dfrac{3\mu_oi}{8a} ( downward )

\blacksquare\:\:\:\underline\red{\text{So the net , M.I. at point O is }}

\therefore\:\: B=B_{AB}+B_{BC}+B_{DF}

\implies B=\dfrac{\mu_oi}{4\sqrt{2}\pi b}+\dfrac{\mu_oi}{4\sqrt{2}\pi b}+\dfrac{3\mu_oi}{8a}

\implies\boxed{ B=\dfrac{\mu_oi}{4\pi}\Big(\dfrac{3\pi}{2a}+\dfrac{\sqrt{2}}{b}\Big)} (downward)

❏ Used Theory

\setlength{\unitlength}{0.2 cm}}\begin{picture}(12,4)\thicklines\put(-4,17){\line(1,0){32}}\put(-4,-7){\line(1,0){32}}\put(-4,17){\line(0,-1){28}}\put(28,17){\line(0,-1){28}}\put(-4,-11){\line(1,0){32}}\qbezier(1,9)(5,5)(1,1)\put(-3,5){\circle*{0.6}}\put(-2.5,5.65){$.$}\put(-1.7,6.6){$.$}\put(-0.5,7.7){$.$}\put(0.2,8.5){$.$}\put(1,9){\line(5,6){4}}\put(1,1){\line(5,-6){4}}\put(-2.5,4.3){$.$}\put(-1.7,3.4){$.$}\put(-0.5,2.3){$.$}\put(0.2,1.5){$.$}\put(3.03,5){\vector(0,1){1}}\put(-1,4.5){$\theta$}\put(-1.7,7.9){$a$}\put(5,6){$in\:this\:case\:,\:B=\dfrac{\mu_oi}{4\pi a}\times\theta$}\put(3.2,2.1){$i$}\put(6.5,-9.5){$THEORY\:\:1$}\end{picture}

\setlength{\unitlength}{0.2cm}}\begin{picture}(12,12)\thicklines\put(2,29){\line(1,0){32.4}}\put(2,-27){\line(1,0){32.4}}\put(2,29){\line(0,-1){60}}\put(34.3,29){\line(0,-1){60}}\put(2,-31){\line(1,0){32.4}}\put(5,5){\line(0,1){20}}\put(5.1,5){\vector(0,1){15}}\put(15,13){\circle*{0.5}}\put(5,5){\line(5,4){10}}\put(5,25){\line(5,-6){10}}\put(5,13){\line(1,0){10}}\put(11,13.8){$\theta_2$}\put(11,11.3){$\theta_1$}\put(9,13.3){$b$}\put(15.6,12.5){$O$}\put(3,12.5){$P$}\put(4.4,25.6){$X$}\put(4.4,3.2){$Y$}\put(3.5,18){$i$}\put(14,22){$in\:this\:case ,$}\put(14,18){$B=\dfrac{\mu_oi}{4\pi b}(\sin\theta_1+\sin\theta_2)$}\put(5,-25){\line(0,1){15}}\put(5.1,-25){\vector(0,1){10}}\put(5,-9){\line(0,1){1}}\put(5,-7){\line(0,1){1}}\put(5,-5){\line(0,1){1}}\put(5,-3){\line(0,1){1}}\put(5.05,-2){\circle*{0.8}}\put(3.5,-14){$i$}\put(6,-2){$O$}\put(10,-5){$in\:this\:case ,\:\theta_1=0\:and\:\theta_2=0$}\put(10,-7){$so\:,B\:=\:0 $}\put(12.5,-29.5){$THEORY\:\:2$}\end{picture}

Similar questions