Math, asked by mald, 3 months ago

plzzzz help........​

Attachments:

Answers

Answered by BrainlyEmpire
8

Answer :

\large{ \star\:\:\boxed{\bf{The\:Required\:Number\:is\:93\:.}}\:\:\star }

Explanation :

Given :–

The tens digit is 6 more than the ones(unit) digit .

Tens digit is 3 times ones(unit) digit .

To Find :–

The required number .

Solution :–

Let the Tens digit of the Number be x and the Ones digit be y .

☆ According to the First Condition :-

\implies\sf{x\:=\:y\:+\:6}\:\:-----\bf{(1)}

☆ According to the Second Condition :-

\implies\sf{x\:=\:3y}\:\:-----\bf{(2)}

Now , putting the value of 'x' from Equation(2) in Equation(1) :-

\rightarrow\sf{3y\:=\:y\:+\:6}

\rightarrow\sf{3y\:-\:y\:=\:6}

\rightarrow\sf{2y\:=\:6}

\rightarrow\sf{y\:=\:\dfrac{6}{2} }

\rightarrow\boxed{\bf{y\:=\:3 }}

Putting this value of 'y' in Equation(1) :-

\rightarrow\sf{x\:=\:3\:+\:6}

\rightarrow\boxed{\bf{x\:=\:9}}

★ As we know that a two - digit number is in the form of :

→ 10(x) + (y)

→ 10(9) + (3)

→ 90 + 3

→ 93

∴ The Required Number is 93 .

Similar questions