Math, asked by bloddymery, 5 months ago

plzzzz help me .....​

Attachments:

Answers

Answered by BrainlyEmpire
2

 \huge {\underline {\underline{ \sf {ANSWER \:  : }}}}

GIVEN : -

  •   \star \: \sf{Z_{1} ,Z_{2} ,Z_{3}  \: are \: vertices \: of \:an \:  equilateral \: triangle.}

TO PROVE : -

  •   \star\:  \: \sf{Z_{1}}^{2}  +  {Z_{2}}^{2}  +  {Z_{3}}^{2}  = Z_{1}.Z_{2} + Z_{2}. Z_{3} + Z_{3}.Z_{1}
  •  \star \:  \:  \sf{  {3Z_{o}}^{2} =  \: Z_{1}}^{2}  +  {Z_{2}}^{2}  +  {Z_{3}}^{2}

SOLUTION : -

  • Let us consider \sf{Z_{1} ,Z_{2} ,Z_{3}} to be the vertices of the equilateral triangle.

  • We know that, each angle of the equilateral triangle is 60° i.e,  \sf \frac{ \pi}{3}.

  • We have the formula, when the complex number is not rotating about its origin which is,

 \longrightarrow \:  \boxed{ \sf{ \:\blue{\frac{Z_{3} -Z_{1}} { \mid \:{Z_{3}  -Z_{1}} \mid}  =\frac{Z_{2} -Z_{1}} { \mid \:{Z_{2}  -Z_{1}} \mid \: \: } {e}^{i \alpha } }}}

For, Anticlockwise Direction

 \implies \: \sf{ \:  \frac{Z_{3} -Z_{1}} { \mid \:{Z_{3}  -Z_{1}} \mid}  =\frac{Z_{2} -Z_{1}} { \mid \:{Z_{2}  -Z_{1}} \mid \: \: } {e}^{i   \frac{ \pi}{3}   } }

As, there the triangle is equilateral, therefore \sf \mid \:{Z_{3}  - Z_{1}} \mid = \mid \:{Z_{2}  - Z_{1}} \mid = l(lenght \: of\: the\: sides)

 \implies \: \sf{ \:  \frac{Z_{3} -Z_{1}} { \cancel{l}} =\frac{Z_{2} -Z_{1}} {  \cancel{l}} {e}^{i \frac{ \pi}{3} } }

 \implies \: \sf{ \: {Z_{3} -Z_{1}} = (\: Z_{2} -Z_{1} \:) {e}^{i \frac{ \pi}{3}}} \:  \:  \:  \:  \:  \longrightarrow \: (1)

____________________________________

Now, for Clockwise Direction :-

 \implies \: \sf{ \:  \frac{Z_{3} -Z_{2}} { \mid \:{Z_{3}  -Z_{2}} \mid}  =\frac{Z_{1} -Z_{2}} { \mid \:{Z_{1}  -Z_{2}} \mid \: \: } {e}^{ - i   \frac{ \pi}{3}}}

Here also, \sf \mid \:{Z_{3}  - Z_{1}} \mid = \mid \:{Z_{2}  - Z_{1}} \mid = l(lenght \: of\: the\: sides)

 \implies \: \sf{ \:  \frac{Z_{3} -Z_{2}} { \cancel{l}} =\frac{Z_{1} -Z_{2}} {  \cancel{l}} {e}^{ - i \frac{ \pi}{3} } }

 \implies \: \sf{ \: {Z_{3} -Z_{2}} = (\: Z_{1} -Z_{2} \:) {e}^{ - i \frac{ \pi}{3}}} \:  \:  \:  \:  \:  \longrightarrow \: (2)

____________________________________

Now, Multiplying (1) and (2) we get,

 \implies \: \sf{ \:( {Z_{3} -Z_{1}})({Z_{3} -Z_{2}}) = (\: Z_{2} -Z_{1} \:).(\: Z_{1} -Z_{2} \:) \: {e}^{i \frac{ \pi}{3}}. {e}^{ - i \frac{ \pi}{3}}}

 \implies \: \sf{ \:( {Z_{3} -Z_{1}})({Z_{3} -Z_{2}}) = (\: Z_{2} -Z_{1} \:).(\: Z_{1} -Z_{2} \:) \: {e}^{i \frac{ \pi}{3} - i \frac{ \pi}{3} } } \:

 \implies \: \sf{ \:( {Z_{3} -Z_{1}})({Z_{3} -Z_{2}}) = -  {(\: Z_{1} -Z_{2} )}^{2} \: {e}^{0}}

\sf  \: \implies \:  {Z_{3}}^{2}  - Z_{2}.Z_{3} - Z_{1}.Z_{3} + Z_{1}.Z_{2} =  -  {Z_{1}}^{2}  -  {Z_{2}}^{2}  + 2Z_{1}.Z_{2}

\sf  \: \: \boxed { \: \green{ \therefore \:  \:  \sf {Z_{1}}^{2}  +  {Z_{2}}^{2}   +  \: {Z_{3}}^{2}  =   Z_{1}.Z_{2} + Z_{2}.Z_{3}  +  Z_{3}.Z_{1}}}

Hence Proved !

____________________________________

Now, For Equilateral Triangle,

  • As  Z_{o} is the Circumcentre of the triangle and also the centroid as the triangle is equilateral.

 \sf  \therefore  Z_{o} = \frac{Z_{1}  + Z_{2}  + Z_{3} }{3}

 \sf \implies  3Z_{o} = Z_{1}  + Z_{2}  + Z_{3}

Squaring both sides we get,

\sf \:  \implies {(3Z_{o}) }^{2}  =  ({Z_{1}  + Z_{2}  + Z_{3})}^{2}

\sf \implies {9Z_{o} }^{2} = {Z_{1} } ^{2}  +  {Z_{2}}^{2}   +  \: {Z_{3}}^{2}   +  2Z_{1}.Z_{2} + 2Z_{2}.Z_{3}  +  2Z_{3}.Z_{1}

(Replacing,   \sf  2Z_{1}.Z_{2} + 2Z_{2}.Z_{3}  +  2Z_{3}.Z_{1} by  \sf {Z_{1}}^{2}  +  {Z_{2}}^{2}   +  \: {Z_{3}}^{2} , as we proved earlier we get)

\sf   \implies  {9Z_{o} }^{2} = 3{Z_{1} } ^{2}  +  3{Z_{2}}^{2}   +  \: 3{Z_{3}}^{2}

\sf   \implies {3Z_{o} }^{2} = {Z_{1} } ^{2}  +  {Z_{2}}^{2}   +  \: {Z_{3}}^{2}

\sf {\therefore {\boxed {\green {{3Z_{o} }^{2} = {Z_{1} } ^{2}  +  {Z_{2}}^{2}   +  \: {Z_{3}}^{2} } } }}

Hence Proved!

Answered by BabeHeart
2

 \large\blue{\underline {\underline{ \bf {ANSWER \:  : }}}}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bf \large \blue{Given} :  -

  \star \: \sf{Z_{1} ,Z_{2} ,Z_{3}  \: are \: vertices \: of \:an \:  equilateral \: triangle.}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \large \bf \blue{To  \: Prove} :  -

  \star\:  \: \sf{Z_{1}}^{2}  +  {Z_{2}}^{2}  +  {Z_{3}}^{2}  = Z_{1}.Z_{2} + Z_{2}. Z_{3} + Z_{3}.Z_{1}

 \star \:  \:  \sf{  {3Z_{o}}^{2} =  \: Z_{1}}^{2}  +  {Z_{2}}^{2}  +  {Z_{3}}^{2}

Let us consider \sf{Z_{1} ,Z_{2} ,Z_{3}} to be the vertices of the equilateral triangle.

We know that, each angle of the equilateral triangle is 60° i.e,  \sf \frac{ \pi}{3}.

We have the formula, when the complex number is not rotating about its origin which is,

 \longrightarrow \:  \boxed{ \sf{ \:\blue{\frac{Z_{3} -Z_{1}} { \mid \:{Z_{3}  -Z_{1}} \mid}  =\frac{Z_{2} -Z_{1}} { \mid \:{Z_{2}  -Z_{1}} \mid \: \: } {e}^{i \alpha } }}}

For, Anticlockwise Direction

 \implies \: \sf{ \:  \frac{Z_{3} -Z_{1}} { \mid \:{Z_{3}  -Z_{1}} \mid}  =\frac{Z_{2} -Z_{1}} { \mid \:{Z_{2}  -Z_{1}} \mid \: \: } {e}^{i   \frac{ \pi}{3}   } }

As, there the triangle is equilateral, therefore \sf \mid \:{Z_{3}  - Z_{1}} \mid = \mid \:{Z_{2}  - Z_{1}} \mid = l(lenght \: of\: the\: sides)

 \implies \: \sf{ \:  \frac{Z_{3} -Z_{1}} { \cancel{l}} =\frac{Z_{2} -Z_{1}} {  \cancel{l}} {e}^{i \frac{ \pi}{3} } }

 \implies \: \sf{ \: {Z_{3} -Z_{1}} = (\: Z_{2} -Z_{1} \:) {e}^{i \frac{ \pi}{3}}} \:  \:  \:  \:  \:  \longrightarrow \: (1)

____________________________________

Now, for Clockwise Direction :-

 \implies \: \sf{ \:  \frac{Z_{3} -Z_{2}} { \mid \:{Z_{3}  -Z_{2}} \mid}  =\frac{Z_{1} -Z_{2}} { \mid \:{Z_{1}  -Z_{2}} \mid \: \: } {e}^{ - i   \frac{ \pi}{3}}}

Here also, \sf \mid \:{Z_{3}  - Z_{1}} \mid = \mid \:{Z_{2}  - Z_{1}} \mid = l(lenght \: of\: the\: sides)

 \implies \: \sf{ \:  \frac{Z_{3} -Z_{2}} { \cancel{l}} =\frac{Z_{1} -Z_{2}} {  \cancel{l}} {e}^{ - i \frac{ \pi}{3} } }

 \implies \: \sf{ \: {Z_{3} -Z_{2}} = (\: Z_{1} -Z_{2} \:) {e}^{ - i \frac{ \pi}{3}}} \:  \:  \:  \:  \:  \longrightarrow \: (2)

____________________________________

Now, Multiplying (1) and (2) we get,

 \implies \: \sf{ \:( {Z_{3} -Z_{1}})({Z_{3} -Z_{2}}) = (\: Z_{2} -Z_{1} \:).(\: Z_{1} -Z_{2} \:) \: {e}^{i \frac{ \pi}{3}}. {e}^{ - i \frac{ \pi}{3}}}

 \implies \: \sf{ \:( {Z_{3} -Z_{1}})({Z_{3} -Z_{2}}) = (\: Z_{2} -Z_{1} \:).(\: Z_{1} -Z_{2} \:) \: {e}^{i \frac{ \pi}{3} - i \frac{ \pi}{3} } } \:

 \implies \: \sf{ \:( {Z_{3} -Z_{1}})({Z_{3} -Z_{2}}) = -  {(\: Z_{1} -Z_{2} )}^{2} \: {e}^{0}}

\sf  \: \implies \:  {Z_{3}}^{2}  - Z_{2}.Z_{3} - Z_{1}.Z_{3} + Z_{1}.Z_{2} =  -  {Z_{1}}^{2}  -  {Z_{2}}^{2}  + 2Z_{1}.Z_{2}

\sf  \: \: \boxed { \: \pink{ \therefore \:  \:  \sf {Z_{1}}^{2}  +  {Z_{2}}^{2}   +  \: {Z_{3}}^{2}  =   Z_{1}.Z_{2} + Z_{2}.Z_{3}  +  Z_{3}.Z_{1}}}

Hence Proved !

____________________________________

Now, For Equilateral Triangle,

As  Z_{o} is the Circumcentre of the triangle and also the centroid as the triangle is equilateral.

 \sf  \therefore  Z_{o} = \frac{Z_{1}  + Z_{2}  + Z_{3} }{3}

 \sf \implies  3Z_{o} = Z_{1}  + Z_{2}  + Z_{3}

Squaring both sides we get,

\sf \:  \implies {(3Z_{o}) }^{2}  =  ({Z_{1}  + Z_{2}  + Z_{3})}^{2}

\sf \implies {9Z_{o} }^{2} = {Z_{1} } ^{2}  +  {Z_{2}}^{2}   +  \: {Z_{3}}^{2}   +  2Z_{1}.Z_{2} + 2Z_{2}.Z_{3}  +  2Z_{3}.Z_{1}

(Replacing,   \sf  2Z_{1}.Z_{2} + 2Z_{2}.Z_{3}  +  2Z_{3}.Z_{1} by  \sf {Z_{1}}^{2}  +  {Z_{2}}^{2}   +  \: {Z_{3}}^{2} , as we proved earlier we get)

\sf   \implies  {9Z_{o} }^{2} = 3{Z_{1} } ^{2}  +  3{Z_{2}}^{2}   +  \: 3{Z_{3}}^{2}

\sf   \implies {3Z_{o} }^{2} = {Z_{1} } ^{2}  +  {Z_{2}}^{2}   +  \: {Z_{3}}^{2}

\sf {\therefore {\boxed {\blue{{3Z_{o} }^{2} = {Z_{1} } ^{2}  +  {Z_{2}}^{2}   +  \: {Z_{3}}^{2} } } }}

Hence Proved!

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions