Math, asked by fairy1145, 3 months ago

Plzzzz help me...... ​

Attachments:

Answers

Answered by BrainlyEmpire
8

{\mathfrak{\underline{\pink{\:\:\: Given:-\:\:\:}}}} \\ \\

\:\:\:\:\bullet\:\:\:\sf{ 4 \: identical \: charges = 2 \mu \: C \:\:\:(each)} \\\\

\:\:\:\:\bullet\:\:\:\sf{Side \: of \: square = 2 \: m }

\\

{\mathfrak{\underline{\purple{\:\:\:To \:Find:-\:\:\:}}}} \\ \\

\:\:\:\:\bullet\:\:\:\sf{ Electric \: potential \: at \: centre\:( V_{c})}

\\

{\mathfrak{\underline{\red{\:\:\: Calculation:-\:\:\:}}}} \\ \\

☯ According to the given data,

\\

\:\:\:\:\bullet\:\:\:\sf{Length \: of \: diagonal=  \sqrt{2} a } \\\\

\:\:\:\:\bullet\:\:\:\sf{ Length \:of \: half \: diagonal = \sqrt{2}}

\\

☯ As we know that,

\\

\dashrightarrow\:\: \sf{V_{c} =  V_{1} +  V_{2} + V_{3} +  V_{4} }

\\

 \sf{(V_{1} =  V_{ 2} =  V_{3} = V_{4}) }

\\

\dashrightarrow\:\: \sf{V_{c} = 4 V_{1} }

\\

\dashrightarrow\:\: \sf{ V_{c} = 4 \times  \dfrac{k q_{1}}{ r_{1}}}

\\

\dashrightarrow\:\: \sf{V_{c} = 4 \times  \dfrac{9 \times  {10}^{9}  \times 2 \times  {10}^{ - 6} }{\sqrt{2}} }

\\

\dashrightarrow\:\: \sf{V_{c} =4 \times 9 \times \sqrt{2} \times  {10}^{9 - 6} }

\\

\dashrightarrow\:\: \sf{V_{c} =36\sqrt{2} \times  {10}^{3} }

\\

\dashrightarrow\:\: \underline{\boxed{\sf{V_{c} =3.6\sqrt{2} \times  {10}^{4}  \: J /c }}}

\\

★ The electric potential at center of square is 3.6\sqrt{2} × 10⁴ J/c

Answered by cutipiebabydoll
0

Answer:

electic field by the diagonality opposits changes canal each other

E = 0

Voltage:

We know V=

 \frac{kv}{e}

(E is a vector V is a scalar)

V =

 \frac{ \sqrt{2kv} }{a}  \\  \\ total \: v \:  =  \:  \frac{4 \sqrt{2kv} }{a} \\  \\

E = 0, V = 0

Step-by-step explanation:

I hope it helps you dear ❣️❣️☺️☺️❤️❤️

Similar questions