Math, asked by manid81, 5 months ago

Plzzzz help me...... ​

Attachments:

Answers

Answered by BrainlyEmpire
29

{\mathfrak{\underline{\orange{\:\:\: Given:-\:\:\:}}}}  \\

\:\:\:\:\bullet\:\:\:\sf{Acceleration\: (a) = 8 \:m/s^{2}}

\:\:\:\:\bullet\:\:\:\sf{Initial\: velocity \:(u) = 0 \:m/s}

\:\:\:\:\bullet\:\:\:\sf{Time \:(t) = 1\: seconds}

\\

{\mathfrak{\underline{\pink{\:\:\:To \:Find:-\:\:\:}}}}  \\

\:\:\:\:\bullet\:\:\:\sf{Distance \:travelled \:(s)}

\\

{\mathfrak{\underline{\purple{\:\:\: Calculation:-\:\:\:}}}} \\ \\

☯ Using 2nd equation of motion:-

\\

\dashrightarrow\:\: \sf{s = ut + \frac{1}{2}a {t}^{2} }

\\

\dashrightarrow\:\: \sf{0 \times 1+ \frac{1}{  \cancel2} \times \cancel8 \times 1\times 1}

\\

\dashrightarrow\:\: \sf{s =  4\times 1 \times 1}

\\

\dashrightarrow\:\: {\boxed{\sf{s = 4\:m}}}

\\

{\mathfrak{\underline{\red{\:\:\: Additional\: Information:-\:\:\:}}}} \\ \\

☣ Equations of motion :-

\\

\boxed{</p><p></p><p>\begin{minipage}{3 cm}$\\</p><p></p><p>\sf{\:\bullet\:\:v = u +at} \\ \\</p><p></p><p>\sf{\:\bullet\:\:s = ut + \frac{1}{2}\:at^{2} }\\ \\</p><p></p><p>\sf{\:\bullet\:\:v^{2} = u^{2} + 2as}\\ \\</p><p>\sf{\:\bullet\:\:s = \dfrac{1}{2} (u + v)t}\\$</p><p></p><p>\end{minipage}</p><p></p><p>}

\\

\sf{Where,}

\:\:\:\:\bullet\:\:\:\textsf{v = Final velocity}

\:\:\:\:\bullet\:\:\:\textsf{u = Initial velocity}

\:\:\:\:\bullet\:\:\:\textsf{a = Acceleration}

\:\:\:\:\bullet\:\:\:\textsf{s = Distance}

\:\:\:\:\bullet\:\:\:\textsf{t = Time taken}

Answered by BabeHeart
5

{\large{\textbf{\underline{\color{skyblue}{Ԛʋᥱꜱtioᥰ \: :-}}}}}

An object undergoes an acceleration of 8ms −2 starting from rest. Find the distance travelled in 1 second.

{\large{\textbf{\underline{\color{skyblue}{Ꭺnѕwєr \: :-}}}}}

 \sf \green{Given :-} \\ \sf{Acceleration = 8ms^{ - 2} } \\ \sf{Time = 1 sec}  \\ \sf \: Distance  \: Travelled, s = ?  \\\sf \: Initial \:  Velocity , u = 0  \\ \sf \: Using  \: the  \: equation ; s = ut+1/2at^2 \\\sf \: s = 0 × 1 + 1/2 × 8 × 1^2 =  \sf \blue{4meter}. \\

Similar questions