Math, asked by manni322, 5 months ago

Plzzzz help me....... ​

Attachments:

Answers

Answered by BrainlyEmpire
5

Given :-

  • Selling price of radio at profit of 10% is Rs.990

To Find :-

  • Gain or loss% when the selling price of the radio is Rs.890

Solution :-

  • Profit% of an article is given by ,

  \\  \star \: {\boxed{\sf{\purple{profit\% =  \frac{(SP - CP) \times 100}{CP} }}}} \\

We have ,

  • Profit% = 10%
  • Selling price (SP) = Rs.990
  • Cost price (CP) = ?

Substituting the values we have ,

 \\  : \implies \sf \: 10 =  \frac{(990 -CP) \times 100 }{CP}  \\  \\

 \\   : \implies \sf \: 10CP = (990 - CP) \times 100 \\  \\

 \\   : \implies \sf \: 10CP = 99000 - 100CP \\  \\

 \\   : \implies \sf \: 10CP + 100CP = 99000 \\  \\

 \\   : \implies  \sf \: 110CP = 99000 \\  \\

 \\   : \implies \sf \: CP =  \frac{99000}{110}  \\  \\

 \\   : \implies{\boxed{\red{\sf{ \:CP = Rs.900 }}}} \\  \\

  • Since the change in Cost price is not mentioned . The Cost price will remain constant i.e , Rs.900

  • Selling price = Rs.890 [Given]

Here (SP) < (CP)

  • So , There must be a loss.

  • Loss% of an article is given by ,

  \\  \star \: {\boxed{\sf{\purple{loss\% =  \frac{(CP - SP  ) \times 100}{CP} }}}} \\

Substituting the values ,

 \\   : \implies \sf \: loss\% =  \frac{(900 - 890) \times 100}{900}  \\  \\

 \\  :  \implies \sf \: loss\% =  \frac{10 \times 100}{900}  \\  \\

 \\   : \implies{\boxed{\pink{\sf{loss\%  \approx \: 1\% }}}} \:  \bigstar \\  \\

•Therefore , The loss% is 1% . Hence , Option(D) is the required answer.

Answered by ItzMayu
123

Answer:

Given :-

Selling price of radio at profit of 10% is Rs.990

To Find :-

Gain or loss% when the selling price of the radio is Rs.890

Solution :-

Profit% of an article is given by ,

  \\  \star \: {\boxed{\sf{\purple{profit\% =  \frac{(SP - CP) \times 100}{CP} }}}} \\

We have ,

Profit% = 10%

Selling price (SP) = Rs.990

Cost price (CP) = ?

Substituting the values we have ,

 \\  : \implies \sf \: 10 =  \frac{(990 -CP) \times 100 }{CP}  \\  \\

 \\   : \implies \sf \: 10CP = (990 - CP) \times 100 \\  \\

 \\   : \implies \sf \: 10CP = 99000 - 100CP \\  \\

 \\   : \implies \sf \: 10CP + 100CP = 99000 \\  \\

 \\   : \implies  \sf \: 110CP = 99000 \\  \\

 \\   : \implies \sf \: CP =  \frac{99000}{110}  \\  \\

 \\   : \implies{\boxed{\red{\sf{ \:CP = Rs.900 }}}} \\  \\

Since the change in Cost price is not mentioned . The Cost price will remain constant i.e , Rs.900

Selling price = Rs.890 [Given]

Here (SP) < (CP)

So , There must be a loss.

Loss% of an article is given by ,

  \\  \star \: {\boxed{\sf{\purple{loss\% =  \frac{(CP - SP  ) \times 100}{CP} }}}} \\

Substituting the values ,

 \\   : \implies \sf \: loss\% =  \frac{(900 - 890) \times 100}{900}  \\  \\

 \\  :  \implies \sf \: loss\% =  \frac{10 \times 100}{900}  \\  \\

 \\   : \implies{\boxed{\pink{\sf{loss\%  \approx \: 1\% }}}} \:  \bigstar \\  \\

•Therefore , The loss% is 1% . Hence , Option(D) is the required answer.

Similar questions