Math, asked by epppie, 5 months ago

Plzzzz help me out....... ​

Attachments:

Answers

Answered by BrainlyEmpire
26

Given:-

  • The numerator of a fraction is 1 less than its denominator.
  • If the numerator is increased by 1 and denominator is increased by 5, the new fraction becomes 4/5.

To find:-

  • Original Fraction?

Solution:-

  • ☯ Let Denominator of fraction be x.
  • Then, Numerator of fraction will be (x - 1).

⠀⠀⠀⠀

\underline{\bigstar\:\boldsymbol{According\:to\:the\:question\::}}\\ \\

:\implies\sf \dfrac{(x - 1) + 1}{x + 5} = \dfrac{4}{5}\\ \\ \\:\implies\sf \dfrac{x}{x + 5} = \dfrac{4}{5}\\ \\

:\implies\sf 5(x) = 4(x + 5)\qquad\qquad\bigg\lgroup\bf Cross\: Multiplication \bigg\rgroup\\ \\

:\implies\sf 5x = 4x + 20\\ \\ \\ :\implies\sf 5x - 4x = 20\\ \\ \\:\implies{\underline{\boxed{\frak{\purple{x = 20}}}}}\;\bigstar\\ \\

Therefore,

  • Denominator of fraction, x = 20
  • Numerator of fraction, (x - 1) = 20 - 1 = 19

⠀⠀⠀⠀

\therefore\:{\underline{\sf{Hence,\:The\: original\:fraction\:is\: \bf{ \dfrac{19}{20}}.}}}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━

\qquad\qquad\boxed{\bf{\mid{\overline{\underline{\pink{\bigstar\: Verification :}}}}}\mid}\\\\

Given that,

⠀⠀⠀⠀

  • If the numerator is increased by 1 and denominator is increased by 5, the new fraction becomes 4/5.

⠀⠀⠀⠀

:\implies\sf \dfrac{19 + 1}{20 + 5} = \dfrac{4}{5}\\ \\ \\:\implies\sf \cancel{ \dfrac{20}{25}} = \dfrac{4}{5}\\ \\ \\:\implies\sf \dfrac{4}{5} = \dfrac{4}{5}\\ \\

\qquad\qquad\qquad\dag\:{\underline{\underline{\sf{\purple{Hence\: Verified!}}}}}

Answered by Prereeta
0

Step-by-step explanation:

Hope it helped

Please mark my answer as the brainliest as you will get 3 free points

Attachments:
Similar questions