Math, asked by dool99, 5 months ago

plzzzz Solve..,...... ​

Attachments:

Answers

Answered by BrainlyEmpire
55

\boxed{\rm{\red{Question:}}}

\dfrac{-2x+1}{3}=5-\dfrac{3(x+4)}{2}

\boxed{\sf{\blue{Solution:}}}

\implies \dfrac{-2x+1}{3}=\dfrac{\red{10} - [3(x+4)]}{2}

[By taking LCM = 2 in RHS]

\implies \dfrac{-2x+1}{3}=\dfrac{\red{10} - 3x-12}{2}

[In RHS 10 - 12 = 22]

\implies \dfrac{-2x+1}{3}=\dfrac{-2 - 3x}{2}

[By cross multiplication]

⇒ 2(-2x + 1) = 3( -2 - 3x)

⇒ -4x + 2 = -6 - 9x

[By taking 2 to RHS and (-9x) to LHS]

⇒ 9x - 4x = -6 - 2

⇒ 5x = -8

[By transporting 5 to RHS]

⇒ x = \red{\frac{-8}{5}}

\green{\therefore} x = \frac{-8}{5}

Hence,

The value of x is \frac{-8}{5}

---------

Verification:-

LHS

= \red{\dfrac{-2x+1}{3}}

[Puuting the value of x]

= \dfrac{-2 \times \frac{-8}{5} + 1}{3}

= \dfrac{ \frac{16}{5} + 1}{3}

= \dfrac{ (\frac{16+5}{5})}{3}

=(\frac{21}{5}) \div 3

=(\frac{21}{5}) \times \frac{1}{3}

\boxed{= \frac{7}{5}}

Now,

RHS

= \purple{5-\frac{3(x+4)}{2}}

[Putting the value of x]

= \purple{5-\dfrac{3(\frac{-8}{5}+4)}{2}}

= \purple{5-\dfrac{3(\frac{-8+20}{5})}{2}}

= \purple{5-\dfrac{3(\frac{12}{5})}{2}}

= \purple{5-\dfrac{(\frac{36}{5})}{2}}

= \purple{\dfrac{(10-\frac{36}{5})}{2}}

= \purple{\dfrac{(\frac{50-36}{5})}{2}}

= \purple{(\frac{14}{5}) \div 2}

= \purple{(\frac{14}{5}) \times \frac{1}{2}}

\boxed{=\frac{7}{5}}

Hence,

LHS = RHS

Answered by Anonymous
25

Answer:

\boxed{\rm{\red{Question:}}}

\dfrac{-2x+1}{3}=5-\dfrac{3(x+4)}{2}

\boxed{\sf{\blue{Solution:}}}

\implies \dfrac{-2x+1}{3}=\dfrac{\red{10} - [3(x+4)]}{2}

[By taking LCM = 2 in RHS]

\implies \dfrac{-2x+1}{3}=\dfrac{\red{10} - 3x-12}{2}

[In RHS 10 - 12 = 22]

\implies \dfrac{-2x+1}{3}=\dfrac{-2 - 3x}{2}

[By cross multiplication]

⇒ 2(-2x + 1) = 3( -2 - 3x)

⇒ -4x + 2 = -6 - 9x

[By taking 2 to RHS and (-9x) to LHS]

⇒ 9x - 4x = -6 - 2

⇒ 5x = -8

[By transporting 5 to RHS]

⇒ x = \red{\frac{-8}{5}}

\green{\therefore} x = \frac{-8}{5}

Hence,

The value of x is \frac{-8}{5}

---------

Verification:-

LHS

= \red{\dfrac{-2x+1}{3}}

[Puuting the value of x]

= \dfrac{-2 \times \frac{-8}{5} + 1}{3}

= \dfrac{ \frac{16}{5} + 1}{3}

= \dfrac{ (\frac{16+5}{5})}{3}

=(\frac{21}{5}) \div 3

=(\frac{21}{5}) \times \frac{1}{3}

\boxed{= \frac{7}{5}}

Now,

RHS

= \purple{5-\frac{3(x+4)}{2}}

[Putting the value of x]

= \purple{5-\dfrac{3(\frac{-8}{5}+4)}{2}}

= \purple{5-\dfrac{3(\frac{-8+20}{5})}{2}}

= \purple{5-\dfrac{3(\frac{12}{5})}{2}}

= \purple{5-\dfrac{(\frac{36}{5})}{2}}

= \purple{\dfrac{(10-\frac{36}{5})}{2}}

= \purple{\dfrac{(\frac{50-36}{5})}{2}}

= \purple{(\frac{14}{5}) \div 2}

= \purple{(\frac{14}{5}) \times \frac{1}{2}}

\boxed{=\frac{7}{5}}

Hence,

LHS = RHS

Similar questions