Math, asked by naal8, 5 months ago

plzzzz solve it...... ​

Attachments:

Answers

Answered by Anonymous
0

Answer:

✮ Answer ✮

\begin{gathered}\boxed{\underline{\boxed{\bold{x = \dfrac{(a^2 + b + ab)}{(a+b)}}}}}\\\\\\\text{And,}\\\boxed{\underline{\boxed{\bold{y = -\dfrac{2ab}{(a+b)}}}}}\\\end{gathered}

x=

(a+b)

(a

2

+b+ab)

And,

y=−

(a+b)

2ab

✮Step-by-step explanation✮

\begin{gathered}\text{Given pair of linear equations in two variables:}\\\\(a-b)x + (a+b)y = a^2 - 2ab - b^2\\\\(a+b)(x+y) = a^2 + b^2\\\\\text{Simplifying the second equation, we get}\\\\(a+b)x + (a+b)y = a^2 + b^2\\\\\text{A standard pair of linear equations in two variables is}\\\\\text{of the form:}\\\\A_{1}x + B_{1}y = C_{1}\\\\\text{and}\\\\A_{2}x + B_{2}y = C_{2}\\\\\text{On comparing the given pair of linear equations}\\\\\text{in two variables with a standard pair of linear}\\\end{gathered}

Given pair of linear equations in two variables:

(a−b)x+(a+b)y=a

2

−2ab−b

2

(a+b)(x+y)=a

2

+b

2

Simplifying the second equation, we get

(a+b)x+(a+b)y=a

2

+b

2

A standard pair of linear equations in two variables is

of the form:

A

1

x+B

1

y=C

1

and

A

2

x+B

2

y=C

2

On comparing the given pair of linear equations

in two variables with a standard pair of linear

\begin{gathered}\\\text{equations in two variables, we get}\\\\\begin{array}{| c | c | c | c | c| c |}\cline{1-6} A_1 & (a-b) & B_1 & (a+b) & C_1 & (a^2-2ab-b^2) \\\cline{1-6} A_2 & (a+b) & B_2 & (a+b) & C_2 & (a^2 + b^2) \\\cline{1-6}\end{array}\\\\\\\text{Using the cross multiplication formula for solving}\\\\\text{a pair of linear equations in two variables, we get}\\\\\dfrac{x}{B_1 C_2 - B_2 C_1} = \dfrac{y}{C_1 A_2 - C_2 A_1} = -\dfrac{1}{A_1 B_2 - A_2 B_1}\\\\\\\end{gathered}

equations in two variables, we get

\cline1−6A

1

\cline1−6A

2

\cline1−6

(a−b)

(a+b)

B

1

B

2

(a+b)

(a+b)

C

1

C

2

(a

2

−2ab−b

2

)

(a

2

+b

2

)

Using the cross multiplication formula for solving

a pair of linear equations in two variables, we get

B

1

C

2

−B

2

C

1

x

=

C

1

A

2

−C

2

A

1

y

=−

A

1

B

2

−A

2

B

1

1

\begin{gathered}\implies \dfrac{x}{(a+b)(a^2 + b^2) - (a+b)(a^2 - 2ab - b^2)}\\\\\\= \dfrac{y}{(a^2 - 2ab - b^2)(a+b) - (a^2 + b^2)(a-b)}\\\\\\= - \dfrac{1}{(a-b)(a+b) - (a+b)(a+b)}\\\\\\\\\implies \dfrac{x}{a^3 + ab^2 + a^2b + b^3 - (a^3 -2a^2b - ab^2 + a^2b - 2ab^2 -b^3)}\\\\\\= \dfrac{y}{a^3 -2a^2b - ab^2 + a^2b - 2ab^2 - b^3 - (a^3 + ab^2 -a^2b - b^3)}\\\\\\= - \dfrac{1}{a^2 - b^2 - (a^2+ b^2+ 2ab)}\\\\\\\\\implies \dfrac{x}{a^3 + b^3 + a^2b + ab^2 - (a^3 - b^3 -a^2b - 3ab^2)}\\\\\\\end{gathered}

(a+b)(a

2

+b

2

)−(a+b)(a

2

−2ab−b

2

)

x

=

(a

2

−2ab−b

2

)(a+b)−(a

2

+b

2

)(a−b)

y

=−

(a−b)(a+b)−(a+b)(a+b)

1

a

3

+ab

2

+a

2

b+b

3

−(a

3

−2a

2

b−ab

2

+a

2

b−2ab

2

−b

3

)

x

=

a

3

−2a

2

b−ab

2

+a

2

b−2ab

2

−b

3

−(a

3

+ab

2

−a

2

b−b

3

)

y

=−

a

2

−b

2

−(a

2

+b

2

+2ab)

1

a

3

+b

3

+a

2

b+ab

2

−(a

3

−b

3

−a

2

b−3ab

2

)

x

\begin{gathered}= \dfrac{y}{a^3 - b^3 - a^2b - 3ab^2 - a^3 - ab^2 + a^2b + b^3}\\\\\\= - \dfrac{1}{a^2 - b^2 -a^2 - b^2 - 2ab}\\\\\\\\\implies \dfrac{x}{a^3 + b^3 + a^2b + ab^2 -a^3 + b^3 +a^2b + 3ab^2}\\\\\\= \dfrac{y}{-4ab^2} = - \dfrac{1}{-2b^2 - 2ab}\\\\\\\\\implies \dfrac{x}{2b^3 + 2a^2b +4ab^2} = -\dfrac{y}{4ab^2} = \dfrac{-1}{-2b(a+b)}\\\\\\\implies \dfrac{x}{2b(b + a^2 + ab)} = -\dfrac{y}{4ab^2} = \dfrac{1}{2b(a+b)}\\\\\\\\\end{gathered}

=

a

3

−b

3

−a

2

b−3ab

2

−a

3

−ab

2

+a

2

b+b

3

y

=−

a

2

−b

2

−a

2

−b

2

−2ab

1

a

3

+b

3

+a

2

b+ab

2

−a

3

+b

3

+a

2

b+3ab

2

x

=

−4ab

2

y

=−

−2b

2

−2ab

1

2b

3

+2a

2

b+4ab

2

x

=−

4ab

2

y

=

−2b(a+b)

−1

2b(b+a

2

+ab)

x

=−

4ab

2

y

=

2b(a+b)

1

✮ \begin{gathered}\text{On comparing $\dfrac{x}{2b(b + a^2 + ab)}$ with $\dfrac{1}{2b(a+b)}$, we get}\\\\\\x = \dfrac{2b(a^2 + b + ab)}{2b(a+b)}\\\\\\\implies \boxed{\underline{\boxed{\bold{x = \dfrac{(a^2 + b + ab)}{(a+b)}}}}}\\\\\\\\\text{And on comparing $-\dfrac{y}{4ab^2}$ with $\dfrac{1}{2b(a+b)}$, we get}\\\\\\y = \dfrac{-4ab^2}{2b(a+b)}\\\\\\\implies \boxed{\underline{\boxed{\bold{y = -\dfrac{2ab}{(a+b)}}}}}\end{gathered}

On comparing

2b(b+a

2

+ab)

x

with

2b(a+b)

1

, we get

x=

2b(a+b)

2b(a

2

+b+ab)

x=

(a+b)

(a

2

+b+ab)

And on comparing −

4ab

2

y

with

2b(a+b)

1

, we get

y=

2b(a+b)

−4ab

2

y=−

(a+b)

2ab

Answered by rosoni28
1

Given Final velocity (v) = 50 m/s

Initial velocity (u) = 30 m/s

Acceleration (a) = 2.5 m/s^2

We know v = u + at

∴ 50 = 30 + 2.5 t.

⇒ 50 - 30 = 2.5 t

⇒ 2.5/20

= t or 8 = t

∴ Time taken to accelerate = 8 seconds

Similar questions