Math, asked by kaya63, 6 months ago

plzzzz solve it...... ​

Attachments:

Answers

Answered by BrainlyEmpire
115

\large\underline{\underline{\sf{\maltese\:\: \red{Question \: : }}}}

Height of tower is 30m. What is length of shadow of tower when angle of inclination of sun is 30° ?

\\

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

\large\underline{\underline{\sf{\maltese\:\: \red{Answer \: : }}}}

Length of shadow of tower = 30√3 m.

\\

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

  \large\underline{\underline{\sf{\maltese\:\: \red{Given \: : }}}}

✯ Height of tower (AB) = 30 m

✯ Angle of inclination of sun (∠ACB ) = 30°

\\

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

\large\underline{\underline{\sf{\maltese\:\: \red{To \: Find \: : }}}}

✯Length of shadow of tower (BC) = ?

\\

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

\large\underline{\underline{\sf{\maltese\:\: \red{Solution \: : }}}}

In ∆ ABC,

✪ AB = Height of tower = 30 m

✪ ∠ACB = Angle of inclination of sun = 30°

✪ BC = Length of shadow of tower = ?

\\

Let's use Trigonometry Ratios now.

In order to find Length of shadow of tower(BC) we need to use tan or cot.

I am using here tan you can also use cot. The answer won't vary.

\\

\rm tan \: C = \frac{AB}{BC}

 \implies \rm tan\: 30^\circ = \frac{30\: m}{BC}

 \implies\rm \frac{1}{\sqrt{3}} = \frac{30\: m}{BC}

 \implies \rm BC = 30 m\: \times \: \sqrt{3}

 \implies \rm BC = 30\sqrt{3} \: m

\\

∴ Length of shadow of tower = 30√3 m.

Attachments:
Answered by Anonymous
36

Answer:

Solution

In ∆ ABC,

✪ AB = Height of tower = 30 m

✪ ∠ACB = Angle of inclination of sun = 30°

✪ BC = Length of shadow of tower = ?

\\

Let's use Trigonometry Ratios now.

In order to find Length of shadow of tower(BC) we need to use tan or cot.

I am using here tan you can also use cot. The answer won't vary.

\\

\rm tan \: C = \frac{AB}{BC}

 \implies \rm tan\: 30^\circ = \frac{30\: m}{BC}

 \implies\rm \frac{1}{\sqrt{3}} = \frac{30\: m}{BC}

 \implies \rm BC = 30 m\: \times \: \sqrt{3}

 \implies \rm BC = 30\sqrt{3} \: m

\\

∴ Length of shadow of tower = 30√3 m.

Similar questions