Math, asked by opk72, 5 months ago

plzzzz solve it....... ​

Attachments:

Answers

Answered by BrainlyEmpire
77

\rule{200}4

\underline{\underline{\sf{ \color{red}{\qquad Given\:: \qquad}  }}}

Curved surface area of cylindrical powder cane is 879.2 cm².

It's base diameter is 28 cm.

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

∴ Radius = \sf{\dfrac{D}{2}} = \sf{\dfrac{28}{2}} = \sf{\cancel{\dfrac{28}{2}}} = 14 cm.

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\underline{\underline{\sf{ \color{red}{\qquad To\:Find\:: \qquad}  }}}

Height and volume of cane.

\underline{\underline{\sf{ \color{red}{\qquad Diagram\:: \qquad}  }}}

\setlength{\unitlength}{1mm}\begin{picture}(5,5)\thicklines\multiput(-0.5,-1)(26,0){2}{\line(0,1){40}}\multiput(12.5,-1)(0,3.2){13}{\line(0,1){1.6}}\multiput(12.5,-1)(0,40){2}{\multiput(0,0)(2,0){7}{\line(1,0){1}}}\multiput(0,0)(0,40){2}{\qbezier(1,0)(12,3)(24,0)\qbezier(1,0)(-2,-1)(1,-2)\qbezier(24,0)(27,-1)(24,-2)\qbezier(1,-2)(12,-5)(24,-2)}\multiput(18,2)(0,32){2}{\sf{14\ cm}}\put(9,17.5){\sf{?}}\end{picture}

\underline{\underline{\sf{ \color{red}{\qquad Solution\:: \qquad}  }}}

As we know that :-

{\red\bigstar\:\underline{\boxed {\bold  \green {Curved\:surface\:area(CSA)_{(Cylinder)}\:=\:2\pi rh}}}}

Putting all values :-

\ratio\longrightarrow \sf\:\:\:{2\:\times\:\dfrac{22}{7}\:\times\:14\:\times\:h\:=\:879.2}

\ratio\longrightarrow \sf\:\:\:{2\:\times\:\dfrac{22}{\cancel{7}}\:\times\:\cancel{14}\:\times\:h\:=\:879.2}

\ratio\longrightarrow \sf\:\:\:{2\:\times\:22\:\times\:2\:\times\:h\:=\:879.2}

\ratio\longrightarrow \sf\:\:\:{88\:\times\:h\:=\:879.2}

\ratio\longrightarrow \sf\:\:\:{h\:=\:\dfrac{879.2}{88}}

\ratio\longrightarrow \sf\:\:\:{h\:=\:\cancel{\dfrac{879.2}{88}}}

\ratio\longrightarrow \:\:\:\underline{\sf{h\:=\:9.99}}

\underline{\boxed {\frak {\therefore \red {Height_{(Cylindrical\:cane)}\:\leadsto\:9.99\:cm}}}}\:\blue\bigstar

Now,

{\red\bigstar\:\underline{\boxed {\bold  \green {Volume_{(Cylinder)}\:=\:\pi r^2h}}}}

Putting all values :-

\ratio\implies \sf{\dfrac{22}{7}\:\times\:(14)^2\:\times\:9.99}

\ratio\implies \sf{\dfrac{22}{7}\:\times\:14\:\times\:14\:\times\:9.99}

\ratio\implies \sf{\dfrac{22}{\cancel{7}}\:\times\:\cancel{14}\:\times\:14\:\times\:9.99}

\ratio\implies \sf{22\:\times\:2\:\times\:14\:\times\:9.99}

\ratio\implies \underline{\sf{6153.84}}

\underline{\boxed {\frak {\therefore \red {Volume_{(Cylindrical\:cane)}\:\leadsto\:6153.84\:cm^3}}}}\:\blue\bigstar

NOTE :-

Dear user if you are not able to see the diagram from app. Please see it from the the site (brainly.in). It will be correctly displayed there.

\rule{200}4

Answered by Anonymous
43

Answer:

Given

Curved surface area of cylindrical powder cane is 879.2 cm².

It's base diameter is 28 cm.

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

∴ Radius = \sf{\dfrac{D}{2}} = \sf{\dfrac{28}{2}} = \sf{\cancel{\dfrac{28}{2}}} = 14 cm.

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\underline{\underline{\sf{ \color{pink}{\qquad To\:Find\:: \qquad}  }}}

Height and volume of cane.

solution

As we know that :-

{\red\bigstar\:\underline{\boxed {\bold  \purple {Curved\:surface\:area(CSA)_{(Cylinder)}\:=\:2\pi rh}}}}

Putting all values :-

\ratio\longrightarrow \sf\:\:\:{2\:\times\:\dfrac{22}{7}\:\times\:14\:\times\:h\:=\:879.2}

\ratio\longrightarrow \sf\:\:\:{2\:\times\:\dfrac{22}{\cancel{7}}\:\times\:\cancel{14}\:\times\:h\:=\:879.2}

\ratio\longrightarrow \sf\:\:\:{2\:\times\:22\:\times\:2\:\times\:h\:=\:879.2}

\ratio\longrightarrow \sf\:\:\:{88\:\times\:h\:=\:879.2}

\ratio\longrightarrow \sf\:\:\:{h\:=\:\dfrac{879.2}{88}}

\ratio\longrightarrow \sf\:\:\:{h\:=\:\cancel{\dfrac{879.2}{88}}}

\ratio\longrightarrow \:\:\:\underline{\sf{h\:=\:9.99}}

\underline{\boxed {\frak {\therefore \red {Height_{(Cylindrical\:cane)}\:\leadsto\:9.99\:cm}}}}\:\blue\bigstar

Now,

{\red\bigstar\:\underline{\boxed {\bold  \green {Volume_{(Cylinder)}\:=\:\pi r^2h}}}}

Putting all values :-

\ratio\implies \sf{\dfrac{22}{7}\:\times\:(14)^2\:\times\:9.99}

\ratio\implies \sf{\dfrac{22}{7}\:\times\:14\:\times\:14\:\times\:9.99}

\ratio\implies \sf{\dfrac{22}{\cancel{7}}\:\times\:\cancel{14}\:\times\:14\:\times\:9.99}

\ratio\implies \sf{22\:\times\:2\:\times\:14\:\times\:9.99}

\ratio\implies \underline{\sf{6153.84}}

\underline{\boxed {\frak {\therefore \orange {Volume_{(Cylindrical\:cane)}\:\leadsto\:6153.84\:cm^3}}}}\:\blue\bigstar

Similar questions