Math, asked by adi8127, 5 months ago

plzzzz solve it....​

Attachments:

Answers

Answered by BrainlyEmpire
81

{ \frak { \underline\purple{\qquad Given\: :\qquad}}} \:

Length of playground is 2 m larger than it's width and it's area is 195m²

{ \frak { \underline\purple{\qquad To\:Find\: :\qquad}}} \:

Length and width of the playground.

{ \frak { \underline\purple{\qquad Diagram \::\qquad}}} \:

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\multiput(0,0)(5,0){2}{\line(0,1){3}}\multiput(0,0)(0,3){2}{\line(1,0){5}}\put(0.03,0.02){\framebox(0.25,0.25)}\put(0.03,2.75){\framebox(0.25,0.25)}\put(4.74,2.75){\framebox(0.25,0.25)}\put(4.74,0.02){\framebox(0.25,0.25)}\multiput(2.1,-0.7)(0,4.2){2}{\sf\large x + 2 m}\multiput(-1.4,1.4)(6.8,0){2}{\sf\large x m}\put(-0.5,-0.4){\bf A}\put(-0.5,3.2){\bf D}\put(5.3,-0.4){\bf B}\put(5.3,3.2){\bf C}\end{picture}

{ \frak { \underline\purple{\qquad Solution\: :\qquad}}} \:

\:\:\:\:\:\:\bullet\:\sf{Let \:it's \:width(w)\: = x \:m}

\:\:\:\:\:\:\bullet\:\sf{\therefore\:Length(l)\: =\: x \:+ 2\: m}

{\red\bigstar\:\underline{\boxed {\bold \green {Area_{(rectangle)}\:\leadsto\:width(w)\:\times\:length(l)}}}}

Putting all values in the formulated :-

\sf{x\:\times\:(x\:+\:2)\:=\:195}

\sf{x^2\:+\:2x\:=\:195}

\sf{x^2\:+\:2x\:=\:195}

\sf{x^2\:+\:2x\:-\:195\:=\:0}

☯ Quadratic equation formed !! ☯

☯ Let's solve it !! ☯

\sf{x^2\:+\:15x\:-\:13x\:-\:195\:=\:0}

\sf{x(x\:+\:15)\:-\:13(x\:+\:15)\:=\:0}

\sf{(x\:+\:15)\:(x\:-\:13)\:=\:0}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Value of x for , (x + 15) = 0

➱ x = 0 - 15

➱ x = -15

Value of x for , (x - 13) = 0

➱ x = 0 + 13

➱ x = 13

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

☯ Width cannot be negative !! ☯

\underline{\boxed {\bold {\therefore \purple {x\:=\:width(w)\:=\:13}}}}\:\pink\bigstar

Length

\sf{ x \:+ \:2}

\sf{13\:+\:2}

\sf\underline{15}

\underline{\boxed {\bold {\therefore \orange {x\:+\:2\:=\:length(l)\:=\:15}}}}\:\green\bigstar

{ \frak { \underline\purple{\qquad Note :\qquad}}} \:

Dear user if you are not able to see the diagram from app. Please see it from the the site (brainly.in). It will be correctly displayed there.

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by ItzVenomKingXx
20

Area of the rectangular playground =195 m²

To find:

Length =?, Breadth =?

Solution:

Let breadth of the rectangular playground =b

Length of the rectangular playground =(b+2)

Area of rectangular playground = Length × Breadth

⇒195=(b+2)×b²

⇒195=b² +2b

⇒b²+2b−195=0

⇒b²+15b−13b−195=0

⇒b(b+15)−13(b+15)=0

⇒(b−13)(b+15)=0

⇒b=13 or b=−15

Value b of can't be negative. So b=13

Therefore, breadth of the rectangular playground =13 m

and length of the rectangular playground =15 m

Similar questions