Math, asked by amit499884, 5 months ago

plzzzz solve it fast. ​

Attachments:

Answers

Answered by BrainlyEmpire
78

Given lines:-

There are two given lines :-

\tt\longrightarrow{y - \sqrt{3}x - 5 = 0}

\tt\longrightarrow{\sqrt{3}y - X + 6 = 0}

To find:-

Angle between the given two lines.

Solution:-

We have to equation of lines, given in the question.

★ First line:-

\tt\longrightarrow{y - \sqrt{3}x - 5 = 0}

\mathcal{\bigg\lgroup{In\: slope\: intercept\: form}\bigg\rgroup}

\tt\longrightarrow{y = \sqrt{3}x + 5 }⠀⠀.....[1]

★ Second line:-

\tt\longrightarrow{\sqrt{3}y - X + 6 = 0}

\mathcal{\bigg\lgroup{In\: slope\: intercept\: form}\bigg\rgroup}

\tt\longrightarrow{y = \dfrac{1}{\sqrt{3}}x - 2\sqrt{3}}⠀⠀.....[2]

\: \: \: \: \: \: \: \: \: \underline{\sf{\red{According\: to\: slope\: intercept\: form}}}

\sf\longmapsto{Slope\: of\: first\: line\: (m_1) = \sqrt{3}}

\sf\longmapsto{Slope\: of\: second\: line\: (m_2) = \dfrac{1}{\sqrt{3}}}

The acute angle (θ) between two lines is given by

\large{\boxed{\boxed{\bf{tan \theta = \bigg| \dfrac{m_2 - m_1}{1 + m_1 m_2} \bigg|\: \: \: }}}}

\: \: \: \: \: \: \: \: \: \underline{\sf{\red{Putting\: the\: values}}}

\rm:\implies\: \: \: \: \: \: \: \: {tan \theta = \bigg| \dfrac{\dfrac{1}{\sqrt{3}} - \sqrt{3}}{1 + \sqrt{3} \times \dfrac{1}{\sqrt{3}}}\bigg|}

\rm:\implies\: \: \: \: \: \: \: \: {tan \theta = \bigg| \dfrac{\dfrac{1 - 3}{\cancel{\sqrt{3}}}}{\dfrac{\sqrt{3} + \sqrt{3}}{\cancel{\sqrt{3}}}}\bigg|}

\rm:\implies\: \: \: \: \: \: \: \: {tan \theta = \bigg| \dfrac{-2}{2\sqrt{3}} \bigg|}

\rm:\implies\: \: \: \: \: \: \: \: {tan \theta = \bigg| \dfrac{-1}{\sqrt{3}} \bigg|}

\rm:\implies\: \: \: \: \: \: \: \: {tan \theta = \dfrac{1}{\sqrt{3}}}

\rm:\implies\: \: \: \: \: \: \: \: {tan \theta = tan30°}

\rm:\implies\: \: \: \: \: \: \: \: {\underline{\boxed{\orange{\theta = 30°}}}}

Hence,

Angle between the two given lines is either 30° or 180° - 30° = 150°.

━━━━━━━━━━━━━━━━━━━━━━

Answered by Anonymous
6

Answer:

y - √3x- 5 = 0

y= √3x+5 ( y = mx + c )

Slope m1 = √3

√3y-x+6 =0

√3y = x -6

y = x/√3–6/√3

slope m2= 1/√3

tan theta =( m1-m2)/(1+m1m2)

tan theta = (√3–1/√3)/[1+(√3*1/√3)]

tan theta = [(√3*√3–1)/√3]/ 1+1)

= [(3–1/√3)]/ 2

= (2/√3)/2

= 1/√3

tan theta = 1/√3

tan30° = 1/√3

The angle between the lines is 30°.

Similar questions