Math, asked by thePOTTERHEAD, 1 year ago

Plzzzz solve this. ​

Attachments:

Answers

Answered by PiyushGoswami
0

Answer:

dx = 1/1+ysquare -2y dy

Step-by-step explanation:

first of all

1+ysquare dx = taninverse -x dx

1+x dx = taninverse -ysquare dy

differentiating x term with respect to x & y term with respect to y,

hence ,

0 +1 dx = 1/1+y square -2y dy

dx = 1/1+y y -2y dy + c

Answered by Anonymous
128

Question:

Solve the differential equation:

(1 +  {y}^{2})dx  = ( {tan}^{ - 1}  - x)dy

Solution:

The given equation can be written as:

 \frac{dx}{dy}  +  \frac{x}{1 +  {y}^{2} }  =  \frac{ {tan}^{ - 1}y }{1 +  {y}^{2} } .........(1)

Comparing it with

 \frac{dx}{dy}  + px = q

We have:

p =  \frac{1}{1 +  {y}^{2} }  \:  \: and \:  \: q =  \frac{ {tan}^{ - 1} y}{1 +  {y}^{2} }  \\  \\ I.F .=  {e}^{\int_ \: p . \: dy }  =  {e}^{\int_\:  \frac{1}{1 +  {y}^{2} }dy }  =  {e}^{ {tan}^{ - 1y} }

Multiplying (1) by ,

 {e}^{tan ^{ - 1}y }

we get:

 {e}^{ {tan}^{ - 1} }. \frac{dx}{dy}  +  \frac{x}{1 -  {y}^{2} }  {e}^{  {tan}^{ - 1} y}  =  \frac{ {tan}^{ - 1}y }{1 +  {y}^{2} } . {e}^{ {tan}^{ - 1} y}  \\  \\  =  >  \frac{d}{dy} (x. {e}^{ { {tan}^{ - 1}y } } ) = ( \frac{ {tan}^{ - 1} y}{1 +  {y}^{2} } ) {e}^{ {tan}^{ - 1} y}

Integrating,

x {e}^{tan ^{ - 1} y}  = \int_ \:  \: ( \frac{ {tan}^{ - 1} y}{1 +  {y}^{2} }) {e}^{ {tan}^{ - 1} y}  dy + c.........(2)

Now

I = \int_ \:  (\frac{ {tan}^{ - 1}y }{1 +  {y}^{2} } ) {e}^{ {tan}^{ - 1}y } dy

\boxed{put \:  {tan}^{ - 1} = t }

So that

( \frac{1}{1 +  {y}^{2} } )dy = dt \\  \\ I = \int_ \: t  \: {e}^{t}  \: dt \\  \\  integrating \: by \: parts \\  \\ \:  \:  = t {e}^{t}  - \int_ \: (1) {e}^{t} dt \\  \\  \:  \:  = t {e}^{t}  -  {e}^{t}   \\  \\  \:  \: =  {e}^{t} (t - 1) \\  \\  \:  \:  =  {e}^{{tan}^{ - 1} y} ( {tan}^{ - 1} y - 1)

From (2)

x \:  {e}^{ {tan}^{ - 1} y}  =  {e}^{ {tan}^{ - 1} y} ( {tan}^{ - 1} y - 1) + c \\  \\ x = ( {tan}^{ - 1} y - 1) + c \:  {e}^{ { - tan}^{ - 1} y} ............(3)

Which is required solution.

Similar questions