plzzzz solve this properly
Attachments:
Answers
Answered by
21
QUESTION:
(a² + 3ab + b²) ÷ (a+b)
ANSWER:
(a² + 3ab + b²) ÷ (a+b) = 1
GIVEN:
a = 1
b = 0
METHOD 1:
EXPLANATION:
Substitute a = 1 and b = 0 in (a² + 3ab + b²) ÷ (a+b)
(a² + 3ab + b²) ÷ (a+b) = (1² + 3(1)(0) + 0²) ÷ ( 1+0)
(a² + 3ab + b²) ÷ (a+b) = (1 + 0 + 0)/1
(a² + 3ab + b²) ÷ (a+b) = 1
METHOD 2:
IDENTITY USED:
A² + 2AB + B² = (A + B)²
EXPLANATION:
(a² + 3ab + b²) ÷ (a+b) = (a² + 2ab + b² + ab) ÷ (a+b)
(a² + 3ab + b²) ÷ (a+b) = ((a + b)² + ab) ÷ a + b
Substitute a = 1 and b = 0 in ((a + b)² + ab) ÷ (a + b)
(a² + 3ab + b²) ÷ (a+b) = ( (1+0)² + 1(0) ) ÷ (1 + 0)
(a² + 3ab + b²) ÷ (a+b) = (1 + 0 )/1
(a² + 3ab + b²) ÷ (a+b) = 1
NOTE:
- PREFER METHOD 1 IN MULTIPLE CHOICE QUESTIONS(MCQs) OR ONE WORDS
- PREFER METHOD 2 IN TWO MARK QUESTIONS OR OTHER HIGHER MARKS
Similar questions