Math, asked by gama18, 6 months ago

plzzzzz....... help !!!? ​

Attachments:

Answers

Answered by BrainlyEmpire
3

AnswEr :—

Given Expression,

 \displaystyle \sf \: l =  \int \big( 3 sin(a)  - 4 cos(a)  \big)da

The above expression can be rewritten as :

 \displaystyle \sf \: l =  \int3 sin(a). da -  \int4cos(a).da

Consider the above expression to be of the form :

 \sf \: l = l_1 - l_2

Firstly,

 \displaystyle \:  \sf \: l_1  =  \int3 \: sin(a)da \\  \\  \displaystyle \longrightarrow \:  \sf  l_1  =  \:3 \int \: sin(a).da \\  \\  \longrightarrow \boxed{ \boxed{ \sf \: l_1  =  - 3cos(a) + c}}

Also,

 \displaystyle \sf \: l_2 = \int 4 cos(a).da \\ \\ \longrightarrow \displaystyle \sf l_2= 4 \int cos(a)da \\ \\ \longrightarrow \boxed{\boxed{\sf l_2 = 4sin(a) + c}} \:

Integral of :

sin x = - cos x + c

cos x = sin x + c

Thus,the integral would be :

 \sf \: \therefore \: , I = - [4sin(a) + 3cos(a)] + C

Similar questions