Math, asked by gama18, 4 months ago

plzzzzz....... help !!!? ​

Attachments:

Answers

Answered by BrainlyEmpire
16

\Huge{\underline{\underline{\mathfrak{Question \colon}}}}

The energy that should be added to an electron to reduce its de-Broglie wavelength from 1 nm to 0.5 nm is

(a) four-times the initial energy ✓

(b) equal to the initial energy

(c) two-times the initial energy

(d) three times the initial energy

\Huge{\underline{\underline{\mathfrak{Solution \colon}}}}

——::: Option (A) is correct

From the Question,

Initial Wavelength (\tt \lambda_1 ) = 1 nm

New Wavelength (\tt \lambda_2 ) = 0.5 nm

Metre - NanoMetre Conversion :

 \boxed{ \boxed{ \tt \: 1 \: nm =  {10}^{ - 9} m}}

\rule{300}{1}

We know that,

\tt \lambda = \dfrac{h}{p}

Also,

 \tt \: K =  \dfrac{ 1}{2}mv^2  \\  \\  \dashrightarrow \:  \tt \: 2K =  m \times \dfrac{p^2}{m^2} \\  \\  \dashrightarrow \tt P = \sqrt{2mK}

Implies,

\longrightarrow \tt \lambda = h \times \dfrac{1}{p} \\ \\ \longrightarrow \tt \lambda = h \times \dfrac{1}{\sqrt{2mK}} \\ \\ \huge{\longrightarrow \boxed{\boxed{\tt \sqrt{E} \propto \dfrac{1}{\lambda} }}}

\rule{300}{1}

\fbox{\sf Know \ The \ Terms }

\sf{Here}\begin{cases}\sf{E \longrightarrow Energy}\\\sf{P \longrightarrow Momentum }\\ \sf{ \lambda \longrightarrow Wavelength} \\ \sf{m  \longrightarrow Mass  } \end{cases}

\rule{300}{1}

Let the energy that has to be supplied to the particle be n times it's Initial Energy

Thus,

\tt \sqrt{\dfrac{E_2}{E_1} } = \dfrac{\lambda_1}{\lambda_2}\\ \\  \longrightarrow \tt \ \dfrac{\sqrt{n \cancel{E}}}{\sqrt{\cancel{E}}} = \dfrac{1 \times 10^{-9}}{0.5 \times 10^{-9}} \\ \\ \longrightarrow \tt n = {(\dfrac{1}{0.5})}^{2} \\ \\ \huge{\longrightarrow \boxed{\boxed{\tt n = 4 }}}

The energy which has to be supplied to the particle is 4 times the initial energy

\rule{300}{1}

\rule{300}{1}

Answered by Anonymous
11

\Huge{\underline{\underline{\mathfrak{Question \colon}}}}

The energy that should be added to an electron to reduce its de-Broglie wavelength from 1 nm to 0.5 nm is

(a) four-times the initial energy ✓

(b) equal to the initial energy

(c) two-times the initial energy

(d) three times the initial energy

\Huge{\underline{\underline{\mathfrak{Solution \colon}}}}

——::: Option (A) is correct

From the Question,

Initial Wavelength (\tt \lambda_1 ) = 1 nm

New Wavelength (\tt \lambda_2 ) = 0.5 nm

Metre - NanoMetre Conversion :

 \boxed{ \boxed{ \tt \: 1 \: nm =  {10}^{ - 9} m}}

\rule{300}{1}

We know that,

\tt \lambda = \dfrac{h}{p}

Also,

 \tt \: K =  \dfrac{ 1}{2}mv^2  \\  \\  \dashrightarrow \:  \tt \: 2K =  m \times \dfrac{p^2}{m^2} \\  \\  \dashrightarrow \tt P = \sqrt{2mK}

Implies,

\longrightarrow \tt \lambda = h \times \dfrac{1}{p} \\ \\ \longrightarrow \tt \lambda = h \times \dfrac{1}{\sqrt{2mK}} \\ \\ \huge{\longrightarrow \boxed{\boxed{\tt \sqrt{E} \propto \dfrac{1}{\lambda} }}}

\rule{300}{1}

\fbox{\sf Know \ The \ Terms }

\sf{Here}\begin{cases}\sf{E \longrightarrow Energy}\\\sf{P \longrightarrow Momentum }\\ \sf{ \lambda \longrightarrow Wavelength} \\ \sf{m  \longrightarrow Mass  } \end{cases}

\rule{300}{1}

Let the energy that has to be supplied to the particle be n times it's Initial Energy

Thus,

\tt \sqrt{\dfrac{E_2}{E_1} } = \dfrac{\lambda_1}{\lambda_2}\\ \\  \longrightarrow \tt \ \dfrac{\sqrt{n \cancel{E}}}{\sqrt{\cancel{E}}} = \dfrac{1 \times 10^{-9}}{0.5 \times 10^{-9}} \\ \\ \longrightarrow \tt n = {(\dfrac{1}{0.5})}^{2} \\ \\ \huge{\longrightarrow \boxed{\boxed{\tt n = 4 }}}

The energy which has to be supplied to the particle is 4 times the initial energy

\rule{300}{1}

\rule{300}{1}

Similar questions