Math, asked by ishu477784, 3 months ago

plzzzzz help me... ​

Attachments:

Answers

Answered by BrainlyEmpire
22

\large\underline{\purple{\sf \orange{\bigstar}Given.equation ::-}}

\displaystyle \sf{x=1+xy\frac{dy}{dx} +\frac{x^2y^2}{2!}\bigg(\frac{dy}{dx}  \bigg)^2 +\frac{x^3y^3}{3!}\bigg(\frac{dy}{dx}  \bigg)^3...}

\large\underline{\purple{\sf \red{\bigstar}To.Find::-}}

The solution of the given differential equation.

\large\underline{\pink{\sf \green{\bigstar}Solution ::-}}

We know from maclaurin series expansion for powers of e :-

\boxed{\bf{e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+...  }}\:\:\:\:\cdots \sf{(i)}

Comparing equation (i) with the given equation, we get :

\sf{x=e^{xy\frac{dy}{dx} }}

\sf{\longrightarrow log_ex=xy\dfrac{dy}{dx} }

\sf{\longrightarrow ydy=\dfrac{log_e x}{x} dx}

Integrating both the sides :-

\displaystyle\sf{\longrightarrow \int ydy=\int\frac{log_ex}{x}dx }

\sf{\longrightarrow \dfrac{y^2}{2}= \dfrac{(log_ex)^2}{2}+C }

\sf{\longrightarrow y^2=(log_ex)^2+C}

\sf{\longrightarrow y=\pm\sqrt{(log_ex)^2}+C }

\sf{\longrightarrow y=\pm log_ex^2+C}

◘ For provided options, the required answer is :-

B. y² = (log x)² + c

Answered by Anonymous
13

\large\bold{\underline{\underline{Given \: Equation:-}}}

\displaystyle \sf{x=1+xy\frac{dy}{dx} +\frac{x^2y^2}{2!}\bigg(\frac{dy}{dx}  \bigg)^2 +\frac{x^3y^3}{3!}\bigg(\frac{dy}{dx}  \bigg)^3...}

\large\underline{\pink{\sf \purple{\bigstar}To.Find:-}}

The solution of the given differential equation.

\large\underline{\green{\sf \red{\bigstar}Solution :-}}

We know from maclaurin series expansion for powers of e :-

\boxed{\bf{e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+...  }}\:\:\:\:\cdots \sf{(i)}

Comparing equation (i) with the given equation, we get :

\sf{x=e^{xy\frac{dy}{dx} }}

\sf{\longrightarrow log_ex=xy\dfrac{dy}{dx} }

\sf{\longrightarrow ydy=\dfrac{log_e x}{x} dx}

Integrating both the sides :-

\displaystyle\sf{\longrightarrow \int ydy=\int\frac{log_ex}{x}dx }

\sf{\longrightarrow \dfrac{y^2}{2}= \dfrac{(log_ex)^2}{2}+C }

\sf{\longrightarrow y^2=(log_ex)^2+C}

\sf{\longrightarrow y=\pm\sqrt{(log_ex)^2}+C }

\sf{\longrightarrow y=\pm log_ex^2+C}

→ For provided options, the required answer is :-

B. y² = (log x)² + c

Similar questions