Math, asked by knofe, 6 months ago

plzzzzz help me...... ​

Attachments:

Answers

Answered by BrainlyEmpire
25

\huge{\underline{\sf{\purple{Solution-}}}}

{\underline{\sf{\red{Given-}}}}

\sf{Volume = 9856 {cm}^{3}}

\sf{diameter\:of\:base = 28cm}

\sf{radius = 14 cm}

{\underline{\sf{\orange{Find-}}}}

i) Height of the cone.

ii) Slant Height of the cone.

iii) Curved surface area.

_________________________________

1. Height of the cone = h

Volume of the cone \huge{\underline{\sf{\orange{= \dfrac{1}{3}\pi{r}^{2}h-}}}}

\longrightarrow \sf {\dfrac{ 1}{3} \pi {r}^{2}h = 9856}

\longrightarrow \sf{ \dfrac{ 1}{3}\times \dfrac{22}{7} \times {14}^{2} \times h = 9856}

\longrightarrow \sf {\dfrac{1 }{3} \times \dfrac{22}{7} \times 14 \times 14 \times h = 9856}

\longrightarrow \sf {\dfrac{616}{3}\times h = 9856}

\longrightarrow \sf{h =  \dfrac{9856 \times 3}{616}}

\longrightarrow \sf{h = 16 \times 3}

\longrightarrow \sf\orange{h = 48 cm}

_________________________________

2. Slant height of the cone = ?

\longrightarrow\huge \sf\orange{{l}^{2} = {h}^{2}+ {r}^{2}}

\longrightarrow \sf{{l}^{2} = {48}^{2}+ {14}^{2}}

\longrightarrow \sf{{l}^{2} = 2304+ 196}

\longrightarrow\sf{{l}^{2} = 2500}

\longrightarrow\sf{l = \sqrt{2500}}

\longrightarrow\sf\orange{l = 50cm}

_________________________________

3. Curved surface area of the cone \huge\sf\blue{\pi rl}

\longrightarrow\sf {\dfrac{22}{7}\times 14 \times 50}

\longrightarrow\sf{44 \times 50}

\longrightarrow\sf\orange{= 2200{cm}^{2}}

_________________________________

Answered by Anonymous
26

Answer:

Let the height of the cone be h cm

Radius of the base of the cone (r) = 28/2 cm = 14 cm

1) volume of the cone = 9856 cm ³

⇒1/3 πr²h = 9856

⇒1/3 × 22/7 × 14 × 14 ×h = 9856

⇒h = 9856 × 7 × 3/14 × 14 × 22 = 48 cm

2) Let l cm be the slant height of the cone then

l = root under (√r² + h ² ) = root under (√14² + 48²) ⇒l = root under (√196 + 2304) = √2500

Therefore l = 50cm

3) curved surface area of cone = π rl = 22/7 × 14 × 50 = 2200 cm ²

hope this helps you

Similar questions