Math, asked by boi92, 5 months ago

plzzzzz help me out​

Attachments:

Answers

Answered by BrainlyEmpire
52

Question:

If \displaystyle{\sf\:\dfrac{a}{b}\:=\:\dfrac{7}{3}}, then find the values of the given ratios.

Answer:

( i ) \displaystyle{\boxed{\red{\sf\:\dfrac{5a\:+\:3b}{5a\:-\:3b}\:=\:\dfrac{22}{13}}}}

( ii ) \displaystyle{\boxed{\pink{\sf\:\dfrac{2a^2\:+\:3b^2}{2a^2\:-\:3b^2}\:=\:\dfrac{125}{71}}}}

( iii ) \displaystyle{\boxed{\orange{\sf\:\dfrac{a^3\:-\:b^3}{b^3}\:=\:\dfrac{316}{27}}}}

( iv ) \displaystyle{\boxed{\blue{\sf\:\dfrac{7a\:+\:9b}{7a\:-\:9b}\:=\:\dfrac{38}{11}}}}

Step-by-step-explanation:

( i )

We have given that,

\displaystyle{\sf\:\dfrac{a}{b}\:=\:\dfrac{7}{3}}

We have to find the value of

\displaystyle{\sf\:\dfrac{5a\:+\:3b}{5a\:-\:3b}}

Now,

\displaystyle{\sf\:\dfrac{a}{b}\:=\:\dfrac{7}{3}}

\displaystyle{\implies\sf\:\dfrac{a}{b}\:\times\:\dfrac{5}{3}\:=\:\dfrac{7}{3}\:\times\:\dfrac{5}{3}\:\:\:\:-\:-\:\left[\:Multiplying\:both\:sides\:by\:\dfrac{5}{3}\:\right]}

\displaystyle{\implies\sf\:\dfrac{5a}{3b}\:=\:\dfrac{35}{9}}

\displaystyle{\implies\sf\:\dfrac{5a\:+\:3b}{5a\:-\:3b}\:=\:\dfrac{35\:+\:9}{35\:-\:9}\:\:\:\:-\:-\:[\:By\:Componendo\:-\:Dividendo\:]}

\displaystyle{\implies\sf\:\dfrac{5a\:+\:3b}{5a\:-\:3b}\:=\:\cancel{\dfrac{44}{26}}}

\displaystyle{\implies\boxed{\red{\sf\:\dfrac{5a\:+\:3b}{5a\:-\:3b}\:=\:\dfrac{22}{13}}}}

───────────────────────────

( ii )

We have given that,

\displaystyle{\sf\:\dfrac{a}{b}\:=\:\dfrac{7}{3}}

Now,

\displaystyle{\sf\:\dfrac{a}{b}\:=\:\dfrac{7}{3}}

\displaystyle{\implies\sf\:\dfrac{a}{7}\:=\:\dfrac{b}{3}\:=\:k\:\:\:-\:-\:-\:[\:By\:cross\:multiplication\:]}

\displaystyle{\implies\sf\:a\:=\:7k\:\:\&\:\:b\:=\:3k}

We have to find the value of

\displaystyle{\sf\:\dfrac{2a^2\:+\:3b^2}{2a^2\:-\:3b^2}}

Now,

\displaystyle{\implies\sf\:\dfrac{2\:\times\:(\:7k\:)^2\:+\:3\:\times\:(\:3k\:)^2}{2\:\times\:(\:7k\:)^2\:-\:3\:\times\:(\:3\:k\:)^2}}

\displaystyle{\implies\sf\:\dfrac{2\:\times\:49k^2\:+\:3\:\times\:9k^2}{2\:\times\:49k^2\:-\:3\:\times\:9k^2}}

\displaystyle{\implies\sf\:\dfrac{98k^2\:+\:27k^2}{98k^2\:-\:27k^2}}

\displaystyle{\implies\sf\:\dfrac{125\:\cancel{k^2}}{71\:\cancel{k^2}}}

\displaystyle{\implies\boxed{\pink{\sf\:\dfrac{2a^2\:+\:3b^2}{2a^2\:-\:3b^2}\:=\:\dfrac{125}{71}}}}

───────────────────────────

( iii )

We have given that,

\displaystyle{\sf\:\dfrac{a}{b}\:=\:\dfrac{7}{3}}

Now,

\displaystyle{\sf\:\dfrac{a}{b}\:=\:\dfrac{7}{3}}

\displaystyle{\implies\sf\:\dfrac{a}{7}\:=\:\dfrac{b}{3}\:=\:k\:\:\:-\:-\:-\:[\:By\:cross\:multiplication\:]}

\displaystyle{\implies\sf\:a\:=\:7k\:\:\&\:\:b\:=\:3k}

We have to find the value of

\displaystyle{\sf\:\dfrac{a^3\:-\:b^3}{b^3}}

Now,

\displaystyle{\implies\sf\:\dfrac{(\:7k\:)^3\:-\:(\:3k\:)^3}{(\:3k\:)^3}}

\displaystyle{\implies\sf\:\dfrac{343\:k^3\:-\:27\:k^3}{27\:k^3}}

\displaystyle{\implies\sf\:\dfrac{316\:\cancel{k^3}}{27\:\cancel{k^3}}}

\displaystyle{\implies\boxed{\orange{\sf\:\dfrac{a^3\:-\:b^3}{b^3}\:=\:\dfrac{316}{27}}}}

───────────────────────────

( iv )

We have given that,

\displaystyle{\sf\:\dfrac{a}{b}\:=\:\dfrac{7}{3}}

We have to find the value of

\displaystyle{\sf\:\dfrac{7a\:+\:9b}{7a\:-\:9b}}

Now,

\displaystyle{\sf\:\dfrac{a}{b}\:=\:\dfrac{7}{3}}

\displaystyle{\implies\sf\:\dfrac{a}{b}\:\times\:\dfrac{7}{9}\:=\:\dfrac{7}{3}\:\times\:\dfrac{7}{9}\:\:\:\:-\:-\:\left[\:Multiplying\:both\:sides\:by\:\dfrac{7}{9}\:\right]}

\displaystyle{\implies\sf\:\dfrac{7a}{9b}\:=\:\dfrac{49}{27}}

\displaystyle{\implies\sf\:\dfrac{7a\:+\:9b}{7a\:-\:9b}\:=\:\dfrac{49\:+\:27}{49\:-\:27}\:\:\:\:-\:-\:[\:By\:Componendo\:-\:Dividendo\:]}

\displaystyle{\implies\sf\:\dfrac{7a\:+\:9b}{7a\:-\:9b}\:=\:\cancel{\dfrac{76}{22}}}

\displaystyle{\implies\boxed{\blue{\sf\:\dfrac{7a\:+\:9b}{7a\:-\:9b}\:=\:\dfrac{38}{11}}}}

Answered by Anonymous
36

solution

───────────────────────────

We have given that,

\displaystyle{\sf\:\dfrac{a}{b}\:=\:\dfrac{7}{3}}

Now,

\displaystyle{\sf\:\dfrac{a}{b}\:=\:\dfrac{7}{3}}

\displaystyle{\implies\sf\:a\:=\:7k\:\:\&\:\:b\:=\:3k}

We have to find the value of

\displaystyle{\sf\:\dfrac{2a^2\:+\:3b^2}{2a^2\:-\:3b^2}}

Now,

\displaystyle{\implies\sf\:\dfrac{2\:\times\:(\:7k\:)^2\:+\:3\:\times\:(\:3k\:)^2}{2\:\times\:(\:7k\:)^2\:-\:3\:\times\:(\:3\:k\:)^2}}

\displaystyle{\implies\sf\:\dfrac{2\:\times\:49k^2\:+\:3\:\times\:9k^2}{2\:\times\:49k^2\:-\:3\:\times\:9k^2}}

\displaystyle{\implies\sf\:\dfrac{98k^2\:+\:27k^2}{98k^2\:-\:27k^2}}

\displaystyle{\implies\sf\:\dfrac{125\:\cancel{k^2}}{71\:\cancel{k^2}}}

\displaystyle{\implies\boxed{\orange{\sf\:\dfrac{2a^2\:+\:3b^2}{2a^2\:-\:3b^2}\:=\:\dfrac{125}{71}}}}

Similar questions