Math, asked by sallu756, 4 months ago

plzzzzz help me out..... ​

Attachments:

Answers

Answered by BrainlyEmpire
51

⭐ Diagram:- Refer the attachment ⭐

Given:-

Each side of a rhombus = 5cm

One of the diagonals of the rhombus = 8cm.

To Find:-

The length of the other diagonal.

The area of the rhombus.

Solution:-

(i) As we know that:-

For a rhombus :-

 \sf \implies {Side}^{2}  =   \bigg(\dfrac{ d_{1}}{2}  \bigg)^{2}  + \bigg(\dfrac{ d_{2}}{2}  \bigg)^{2}

Where, d₁ and d₂ are the diagonals.

 \sf \implies {(5)}^{2}  =   \bigg(\dfrac{ 8}{2}  \bigg)^{2}  + \bigg(\dfrac{ d_{2}}{2}  \bigg)^{2}

 \sf \implies {(5)}^{2}  =   {(4)}^{2} + \dfrac{ (d_{2} )^{2} }{ {(2)}^{2} }

 \sf \implies 25  =   16 + \dfrac{ (d_{2} )^{2} }{ {4} }

 \sf \implies  \dfrac{ (d_{2} )^{2} }{ {4} } = 25 - 16

 \sf \implies  (d_{2} )^{2}  = 9 \times 4

 \sf \implies  (d_{2} )^{2}  =36

 \sf \implies  d_{2}  = \sqrt{36}  = 6

 \sf  \therefore \underline{\:\: \underline{\: Length \: of \: other \: diagonal \:  (d_{2})= 6cm\:}\:\:}

\sf (ii) \: Area \: of \: rhombus = \dfrac{1}{2}\times d_{1} \times d_{2}

\sf  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = \dfrac{1}{2}\times 8 \times 6

\sf  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = \dfrac{48}{2}

\sf  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = 24cm^2

\large \underline{\boxed{\sf \therefore Area \: of \: the \: rhombus = 24cm^2}}

Attachments:
Answered by BabeHeart
3

 \sf \purple{Given:-}

Each side of a rhombus = 5cm

One of the diagonals of the rhombus = 8cm.

 \sf \purple{To  \: Find:-}

The length of the other diagonal.

The area of the rhombus.

 \sf \purple{Solution:-}

(i) As we know that:-

For a rhombus :-

 \sf \implies {Side}^{2}  =   \bigg(\dfrac{ d_{1}}{2}  \bigg)^{2}  + \bigg(\dfrac{ d_{2}}{2}  \bigg)^{2}

Where, d₁ and d₂ are the diagonals.

 \sf \implies {(5)}^{2}  =   \bigg(\dfrac{ 8}{2}  \bigg)^{2}  + \bigg(\dfrac{ d_{2}}{2}  \bigg)^{2}

 \sf \implies {(5)}^{2}  =   {(4)}^{2} + \dfrac{ (d_{2} )^{2} }{ {(2)}^{2} }

 \sf \implies 25  =   16 + \dfrac{ (d_{2} )^{2} }{ {4} }

 \sf \implies  \dfrac{ (d_{2} )^{2} }{ {4} } = 25 - 16

 \sf \implies  (d_{2} )^{2}  = 9 \times 4

 \sf \implies  (d_{2} )^{2}  =36

 \sf \implies  d_{2}  = \sqrt{36}  = 6

 \sf  \therefore \underline{\:\: \underline{\: Length \: of \: other \: diagonal \:  (d_{2})= 6cm\:}\:\:}

\sf (ii) \: Area \: of \: rhombus = \dfrac{1}{2}\times d_{1} \times d_{2}

\sf  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = \dfrac{1}{2}\times 8 \times 6

\sf  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = \dfrac{48}{2}

\sf  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = 24cm^2

\large \underline{\boxed{\sf \therefore Area \: of \: the \: rhombus = 24cm^2}}

Similar questions