Math, asked by zeba39, 4 months ago

plzzzzz solve it.... ​

Attachments:

Answers

Answered by BrainlyEmpire
78

Answer:-

\displaystyle{\boxed{\red{\sf\:\sin\:A\:=\:\dfrac{1}{\sqrt{10}}}}}

\displaystyle{\boxed{\pink{\sf\:\cos\:A\:=\:\dfrac{3}{\sqrt{10}}}}}

\displaystyle{\boxed{\green{\sf\:\tan\:A\:=\:\dfrac{1}{3}}}}

\displaystyle{\boxed{\blue{\sf\:\sec\:A\:=\:\dfrac{\sqrt{10}}{3}}}}

\displaystyle{\boxed{\red{\sf\:\cot\:A\:=\:3}}}

Step-by-step-explanation:-

We have given that,

\displaystyle\sf\:cosec\:A\:=\:\sqrt{10}

We have to find all the remaining trigonometric ratios.

Now,

\displaystyle\sf\:cosec\:A\:=\:\sqrt{10}

\displaystyle{\pink{\sf\:\sin\:A\:=\:\dfrac{1}{cosec\:A}}\sf\:\:\:-\:-\:-\:[\:Trigonometric\:identity\:]}

\displaystyle{\implies\boxed{\red{\sf\:\sin\:A\:=\:\dfrac{1}{\sqrt{10}}}}}

─────────────────────

Now,

\displaystyle{\pink{\sf\:1\:+\:\cot^2\:A\:=\:cosec^2\:A}\sf\:\:\:-\:-\:[\:Trigonometric\:identity\:]}

\displaystyle{\implies\sf\:1\:+\:\cot^2\:A\:=\:\left(\:\sqrt{10}\:\right)^2}

\displaystyle{\implies\sf\:1\:+\:\cot^2\:A\:=\:10}

\displaystyle{\implies\sf\:\cot^2\:A\:=\:10\:-\:1}

\displaystyle{\implies\sf\:\cot^2\:A\:=\:9}

\displaystyle{\implies\sf\:\cot\:A\:=\:\sqrt{9}}

\displaystyle{\implies\boxed{\pink{\sf\:\cot\:A\:=\:3}}}

─────────────────────

Now,

\displaystyle{\pink{\sf\:\tan\:A\:=\:\dfrac{1}{\cot\:A}}\sf\:\:\:-\:-\:-\:[\:Trigonometric\:identity\:]}

\displaystyle{\implies\boxed{\green{\sf\:\tan\:A\:=\:\dfrac{1}{3}}}}

─────────────────────

Now,

\displaystyle{\pink{\sf\:\tan\:A\:=\:\dfrac{\sin\:A}{\cos\:A}}\sf\:\:\:-\:-\:[\:Trigonometric\:identity\:]}

\displaystyle{\implies\sf\:\dfrac{1}{3}\:=\:\dfrac{\dfrac{1}{\sqrt{10}}}{\cos\:A}}

\displaystyle{\implies\sf\:\cos\:A\:=\:\dfrac{\dfrac{1}{\sqrt{10}}}{\dfrac{1}{3}}}

\displaystyle{\implies\sf\:\cos\:A\:=\:\dfrac{1}{\sqrt{10}}\:\times\:\dfrac{3}{1}}

\displaystyle{\implies\boxed{\blue{\sf\:\cos\:A\:=\:\dfrac{3}{\sqrt{10}}}}}

─────────────────────

Now,

\displaystyle{\pink{\sf\:\sec\:A\:=\:\dfrac{1}{\cos\:A}}\sf\:\:\:-\:-\:[\:Trigonometric\:identity\:]}

\displaystyle{\implies\sf\:\sec\:A\:=\:\dfrac{1}{\dfrac{3}{\sqrt{10}}}}

\displaystyle{\implies\sf\:\sec\:A\:=\:1\:\times\:\dfrac{\sqrt{10}}{3}}

\displaystyle{\implies\boxed{\red{\sf\:\sec\:A\:=\:\dfrac{\sqrt{10}}{3}}}}

Answered by Anonymous
27

Answer:

We know that, cosec θ = AB/BC = hypotenuse/perpendicular = (k√10)/k

(where k is a positive)

By Pythagoras Theorem:

AC² = AB² + BC²

= 10k² + k²

= 9k²

AC = 3k

Find other T-rations using their definitions:

Sin θ = BC/AB = 1/√10

cos θ = AC/AB = (3k)/(k√10) = 3/√10

tan θ = BC/AC = sin θ /cos θ = 1/3

sec θ = AB/AC = 1/cos θ = √10/3

cot θ = AC/BC = 1/tan θ = 3

hope this helps you

Attachments:
Similar questions